Fast addition is essential in many DSP algorithms. Various structures have been introduced to speed up the time critical carry propagation. For high throughput applications, however, it may be necessary to introduce pipelining. In this report the power consumption of four different adder structures, with varying word length and different number of pipeline cuts, is compared. Out of the four adder structures compared, the Kogge-Stone parallel prefix adder proves to be the best choice most of the time. The Brent-Kung parallel prefix adder is also a good choice, but the maximal throughput does not reach as high as the maximal throughput of the Kogge-Stone parallel prefix adder.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2390 |
Date | January 2004 |
Creators | Åslund, Anders |
Publisher | Linköpings universitet, Institutionen för systemteknik, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | LiTH-ISY-Ex, ; 3534 |
Page generated in 0.0022 seconds