Return to search

Raisonnement et planification développementale d’un robot via une interaction enactive avec un humain / Developmental reasoning and planning with robot through enactive interaction with human

Que cela soit par des automates puis par des robots, l'Homme a été fasciné par des machines pouvant exécuter des tâches pour lui, dans de nombreux domaines, comme l'industrie ou les services : c'est ce dernier domaine qui nous sert de contexte. Ainsi, nous avons utilisé une approche développementale, où le robot se doit d'apprendre de nouvelles tâches au cours de sa vie. Inspiré par des théories sur le développement de l'enfant, nous avons extrait les concepts intéressants pour les implémenter sur une plateforme robotique humanoïde : l'iCub. L'acquisition du langage est une première étape, où la capacité à classifier les mots, de classes ouvertes et de classes fermées permet d'obtenir une syntaxe qui aide l'enfant à construire le lien entre une phrase et son sens. Cette méthode a été implémentée grâce à un réseau de neurones récurrents, utilisant une base de données fournit par l'humain en interagissant avec le robot. La maîtrise du langage permet à l'enfant de participer à des actions plus complexes, en particulier des tâches collaboratives où la parole est requise de négocier le mode d'apprentissage sur plusieurs modalités. Implémenté sur l'iCub et le Nao, cela permet un apprentissage en temps réel et de réaliser un plan partagé. Enfin, nous avons étudié le fonctionnement de la mémoire autobiographique, cruciale pour se remémorer des épisodes passés de sa vie, d'en tirer des prédictions et de les appliquer dans le futur. En recréant cette mémoire en SQL et formatant les données en PDDL, l'iCub est alors capable de raisonner en fonction de sa propre expérience, lui permettant ainsi de résoudre le problème des Tours d'Hanoi sans jamais l'avoir visualisé avant / From automata to robots, the Human has always been fascinated by machines which could execute tasks for him, in several domains like industry or services. Indeed, we have used a developmental approach, where the robot has to learn new tasks during his life. Inspired by theories in child development, we have extracted the interesting concepts to implement them on a humanoid robotic platform : the iCub. Language acquisition is a first step, where the capacity to classify closed and opened class words allows to obtain a syntax which help the children to make the link between a sentence and its meaning. This method has been implemented with a recurrent neural network, using a database provided from the human by interaction with the robot. The control of the language allows the children to participate in more complex actions, in particular cooperative tasks, where speech is required to negotiate the learning mode within several modalities. Implemented on the iCub and the Nao, this allows a real-time learning and to realize a shared plan. Eventually, we have studied the functioning of the autobiographical memory, crucial toremember episodes of his life, to extract predictions from and to apply them in the future. By recreating this memory in SQL, and by formatting the data in PDDL, the iCub is then capable of reasoning in function of his own experience, allowing him to solve the Tower of Hanoi problem without knowing the solution before

Identiferoai:union.ndltd.org:theses.fr/2014LYO10037
Date06 March 2014
CreatorsPetit, Maxime
ContributorsLyon 1, Dominey, Peter Ford
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds