Return to search

Variedades de Gelfand-Tsetlin / Gelfand-Tsetlin varieties

Serge Ovsienko provou que a variedade de Gelfand-Tsetlin para gl(n) é equidimensional (i.e., todas suas componentes irredutíveis têm a mesma dimensão) com dimensão n(n-1)/2. Este resultado é conhecido como \"Teorema de Ovsienko\" e tem importantes consequências na Teoria de Representacões de Álgebras. Neste trabalho, provamos uma versão fraca do Teorema de Ovsienko para gl(n) e estendemos tal versão fraca a uma estrutura que tem como caso particular gl(3), esse é o caso do grupo quântico Yangian Yp(gl(3)) de nível p. Além disso, o Teorema de Ovsienko também tem consequências na Geometria Simplética, especificamente na equidimensionalidade das fibras em uma projeção da aplicação de Kostant-Wallach. Neste trabalho apresentamos a generalização deste resultado. / Serge Ovsienko proved that the Gelfand-Tsetlin variety for gl(n) is equidimensional (i.e., all its irreducible components have the same dimension) with dimension n(n-1)/2. This result is known as \"Ovsienko\'s Theorem\" and it has important consequences in Representation Theory of Algebras. In this work, we prove a weak version of Ovsienko\'s Theorem for gl(n) and we extend that weak version to a structure which has as particular case gl(3), this case is the quantum group level p Yangian Yp(gl(3)). Moreover, the theorem of Ovsienko also has consequences in Symplectic Geometry, more concretely in the equidimensionality of the fibers in a projection of the Kostant-Wallach map. In this work we will present the generalization of that result.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05122017-105106
Date21 November 2016
CreatorsGerman Alonso Benitez Monsalve
ContributorsVyacheslav Futorny, Viktor Bekkert, Lucas Henrique Calixto, Cristian Andres Ortiz Gonzalez, Marcos Benevenuto Jardim
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds