Return to search

Geomechanical testing of non-hardening grout : for determination of flowability and strength properties

Due to an increasing amount of aging tendencies in Swedish embankment dams, failures such as internal erosion has become a more common problem. Internal erosion is a phenomenon where certain soil material within the embankment dam is removed, often over a longer period of time. It is most common to occur at the inner core of the dam, and if it is allowed to continue for a longer time period the consequences can be disastrous. During the internal erosion, the inner material is washed out, creating larger voids and lowering the geotechnical stability of the dam. When larger voids start to appear, the seepage will increase allowing more material to be washed out and accelerating the process.  In order to repair an embankment dam, exposed to inner erosion, it requires both the location of the faults as well as a suitable method of repairing. A method to repair internal erosion is by using grout and injecting it into the location of the fault. The knowledge regarding what type of grout and how it should be treated is today lacking.  There are reasons to believe that a hardening mixture within an embankment dam using a till core will not cooperate well. For that reason, a grout with non-hardening properties is of interest. this thesis focuses on the Geomechanical strength parameters of two similar experimental non-hardening grouts. One with maximum grain size of 2 mm referred as grout 0/2, and one with maximum grain size of 4 mm, referred to as grout 0/4. The grouts consist of natural aggregates, calcium carbonate, water, bentonite, superplasticizer and defoamer.   The grouts are evaluated by its undrained shear strength, water content, bulk- and dry density using fall cone tests and uniaxial compressive strength tests. To evaluate the grouts angle of friction and angle of dilatancy together with young’s modulus, consolidated, drained triaxial tests were performed. Three tests with different consolidation pressures (50, 150 and 300 kPa) were performed for each grout. Since the grout will gain strength with time, the tests have been performed after certain number of days in order to see the development of the grouts. The laboratories stretch from 0 to 112 days since the time of mixing the grout, and was performed at Luleå University of technology.  Fall cone tests showed that the grout should most likely be mixed on site and left unstirred. Continuously stirring the grout quickly removed the grouts flowability which is why longer transportation should be avoided. At the same time, the accuracy of the grouts mixing is very demanding which needs to be taken into consideration.  Triaxial tests showed that the grout 0/2 had dilatant behavior for 50 and 150 kPa consolidation pressure while 300 kPa showed contractive behavior. The grout 0/4 had dilatant behavior for 50 kPa consolidation pressure while 150 and 300 kPa showed contractive behavior. A theory to explain this behavior was constructed where the bentonite is believed to be behind it. Bentonite slurries behave as a Bingham fluid, where it requires a certain amount of shear stress for the fluid to start to flow. With the same reasoning, the low consolidation pressures do not exceed that threshold, resulting in dilatant behavior. But once that threshold is surpassed the grout starts to contract. In addition, flow curve tests were performed for additives, superplasticizer and defoamer. Both these substances showed Newtonian behavior which leaves Bentonite to be the only additive with Binghamian behavior. / På grund av en ökad mängd med föråldrandetendenser hos svenska jordfyllningsdammar har brott så som inre erosion blivit ett alltmer vanligt problem. Inre erosion är ett fenomen där en viss jord inom jordfyllningsdammen är avlägsnad, generellt över en längre tidsperiod. Oftast inträffar detta vid den inre damkärnan och om erosionen är tillåten att fortskrida sig över en längre period kan konsekvenserna bli förödande. Inre erosion fungerar så att jordmaterial tvättas ut vilket skapar hålutrymmen och minskar den geotekniska hållfastheten för dammen. När större hålutrymmen bildats ökar läckaget som i sin tur tillåter mer material att bli urtvättat och processen blir accelererad. För att kunna reparera en jordfyllningsdam, utsatt för inre erosion, krävs både att platsen för brottet och metoden för att reparera är kända. En metod för att reparera inre erosion är genom att använda injektering och injektera hålutrymmet. Dock är kunskapen gällande vad för typ av injektering och hur den ska hanteras icke existerande i dagsläget. Det finns anledning att tro att ett härdande bruk inom en jordfyllningsdam, med en moränkärna, inte kommer samarbeta särskilt bra. På grund av det har ett bruk med icke-härdande egenskaper undersökt. Den här uppsatsen fokuserar på de geotekniska hållfasthetsegenskaperna för två liknande experimentella icke-härdande bruk. Ett med maximal kornstorlek på 2 mm benämnd som bruk 0/2 och ett med maximal kornstorlek på 4 mm, benämnd som bruk 0/4. Bruket består av natursand, kalciumkarbonat, vatten, bentonit, mjukgöringsmedel och skumdämpare. Bruken är utvärderade genom deras odränerade skjuvhållfasthet, vattenkvot, skrym- och torrdensiteten som har tagits fram från fallkorns-test och enaxiella trycktest (UCS).  För att utvärdera brukens friktionsvinkel och dilationsvinkel tillsammans med styvheten (initiella och 50 %) har konsoliderat, dränerat triaxiala tests utförts. Tre test med varierande konsolideringstryck (50, 150 och 300 kPa) har utförts för båda bruken. I och med att brukens hållfasthet kommer att öka med tiden, har testerna utförts efter ett visst antal dagar, för att se hur utvecklingen ser ut. Laborationerna har sträckt sig från 0 till 112 dagar sedan det att bruken har blandats, och utfördes vid Luleå Tekniska Universitet. Fallkornstesten visade att bruken bör med största sannolikhet blandas på arbetsplatsen och därefter förbli orörda. Kontinuerlig omrörning visade sig frånta brukens flytförmåga, vilket också är anledning till varför längre transporter bör undvikas. Samtidigt så är noggrannheten vid brukens blandning krävande vilket bör tas i beaktning. De triaxiala tester visade att bruk 0/2 visade ett dilatant beteende för både 50 och 150 kPa konsolideringstryck medan 300 kPa hade ett kontrakterande beteende. Bruket 0/4 hade dilatant beteende för 50 kPa konsolideringstryck medan 150 och 300 kPa visade kontrakterande beteende. En teori för att förklara detta beteende togs fram där bentoniten är den troliga orsaken. Bentonitblandningar (bentonite slurry) beter sig som en Bingham-vätska, där det krävs en viss mängd skjuvspänning för att få vätskan att börja flyta. Med samma resonemang applicerade på bruken innebar det att de låga konsolideringstrycken inte översteg tröskelvärdet, vilket resulterade i ett dilatant beteende. Däremot, när tröskelvärdet väl är överstiget börjar bruket att kontraktera istället. Det gjordes även flödestester på tillsatsmedlen, mjukgöringsmedel och skumdämpare. Testerna visade att båda medel betedde sig Newtoniskt, vilket lämnar bentoniten som det enda tillsatsmedlet med Bingham-beteende.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-90040
Date January 2022
CreatorsBarrdahl, Axel
PublisherLuleå tekniska universitet, Geoteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds