The treatment options for multidrug resistant bacteria are dwindling and it is an important issue of research in medicine to solve. One of the more problematic bacterial species is Klebsiella pneumoniae, it can cause infections with high morbidity that are difficult to treat. Common antibiotics for treatment of these infections are carbapenems but K. pneumoniae can produce enzymes called carbapenemases that can hydrolyze carbapenems and most other beta-lactam antibiotics. In this study carbapenemase genes were introduced chromosomally to a previously susceptible K. pneumoniae strain using λ-Red recombineering. Further constructs were made with non-functional porins to examine how they affect combination treatment with carbapenems. Antibiotic combination therapy was evaluated against constructed carbapenemase- (KPC-2, NDM-1 and OXA-48) producing K. pneumoniae strains. Screening was done using time-lapse microscopy (oCelloScope), and combinations with better effect than treatment with a single antibiotic were chosen for time-kill assays. The results shows that a triple combination of colistin, meropenem and the beta-lactamase inhibitor avibactam gives an improved effect, up to twice the effect compared to monotherapy and up to 1.8 times increased effect compared to double combination. The synergistic effect was greater when adding colistin to treat the strains with non-functional porins, indicating that colistin can increase the permeability for other antibiotics into the cell. This is an interesting finding that need to be researched further.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-452424 |
Date | January 2021 |
Creators | Söderhäll, Thomas |
Publisher | Uppsala universitet, Institutionen för biologisk grundutbildning |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds