Return to search

On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples

Eine Vielzahl von Anwendungen in der numerischen Simulation der Strömungsdynamik und der Festkörpermechanik begründen die Entwicklung von zuverlässigen und effizienten Algorithmen für nicht-standard Methoden der Finite-Elemente-Methode (FEM). Um Freiheitsgrade zu sparen, wird in jedem Durchlauf des adaptiven Algorithmus lediglich ein Teil der Gebiete verfeinert. Einige Gebiete bleiben daher möglicherweise verhältnismäßig grob. Die Analyse der Konvergenz und vor allem die der Optimalität benötigt daher über die a priori Fehleranalyse hinausgehende Argumente. Etablierte adaptive Algorithmen beruhen auf collective marking, d.h. die zu verfeinernden Gebiete werden auf Basis eines Gesamtfehlerschätzers markiert. Bei adaptiven Algorithmen mit separate marking wird der Gesamtfehlerschätzer in einen Volumenterm und in einen Fehlerschätzerterm aufgespalten. Da der Volumenterm unabhängig von der diskreten Lösung ist, kann einer schlechten Datenapproximation durch eine lokal tiefe Verfeinerung begegnet werden. Bei hinreichender Datenapproximation wird das Gitter dagegen bezüglich des neuen Fehlerschätzerterms wie üblich level-orientiert verfeinert. Die numerischen Experimente dieser Arbeit liefern deutliche Indizien der quasi-optimalen Konvergenz für den in dieser Arbeit untersuchten adaptiven Algorithmus, der auf separate marking beruht. Der Parameter, der die Verbesserung der Datenapproximation sicherstellt, ist frei wählbar. Dadurch ist es erstmals möglich, eine ausreichende und gleichzeitig optimale Approximation der Daten innerhalb weniger Durchläufe zu erzwingen. Diese Arbeit ermöglicht es, Standardargumente auch für die Konvergenzanalyse von Algorithmen mit separate marking zu verwenden. Dadurch gelingt es Quasi-Optimalität des vorgestellten Algorithmus gemäß einer generellen Vorgehensweise für die drei Beispiele, dem Poisson Modellproblem, dem reinen Verschiebungsproblem der linearen Elastizität und dem Stokes Problem, zu zeigen. / Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard finite element methods (FEMs). To reduce the number of degrees of freedom, in adaptive algorithms only a selection of finite element domains is marked for refinement on each level. Since some element domains may stay relatively coarse, even the analysis of convergence and more importantly the analysis of optimality require new arguments beyond an a priori error analysis. In adaptive algorithms, based on collective marking, a (total) error estimator is used as refinement indicator. For separate marking strategies, the (total) error estimator is split into a volume term and an error estimator term, which estimates the error. Since the volume term is independent of the discrete solution, if there is a poor data approximation the improvement may be realised by a possibly high degree of local mesh refinement. Otherwise, a standard level-oriented mesh refinement based on an error estimator term is performed. This observation results in a natural adaptive algorithm based on separate marking, which is analysed in this thesis. The results of the numerical experiments displayed in this thesis provide strong evidence for the quasi-optimality of the presented adaptive algorithm based on separate marking and for all three model problems. Furthermore its flexibility (in particular the free steering parameter for data approximation) allows a sufficient and optimal data approximation in just a few number of levels of the adaptive scheme. This thesis adapts standard arguments for optimal convergence to adaptive algorithms based on separate marking with a possibly high degree of local mesh refinement, and proves quasi-optimality following a general methodology for three model problems, i.e., the Poisson model problem, the pure displacement problem in linear elasticity and the Stokes equations.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17622
Date23 May 2014
CreatorsRabus, Hella
ContributorsCarstensen, Carsten, Brenner, Susanne C., Hoppe, Ronald H.W.
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Page generated in 0.003 seconds