Having a device with the capability of measure motions from gait produced by a human being, could be of most importance in medicine and sports. Physicians or researchers could measure and analyse key features of a person's gait for the purpose of rehabilitation or science, regarding neurological disabilities. Also in sports, professionals and hobbyists could use such a device for improving their technique or prevent injuries when performing. In this master thesis, I present the research of what technology is capable of today, regarding gait analysis devices. The research that was done has then help the development of a suggested standalone hardware sensor node for a Body Area Network, that can support research in gait analysis. Furthermore, several algorithms like for instance UWB Real-Time Location and Dead Reckoning IMU/AHRS algorithms, have been implemented and tested for the purpose of measuring motions and be able to run on the sensor node device. The work in this thesis shows that a IMU sensor have great potentials for generating high rate motion data while performing on a small mobile device. The UWB technology on the other hand, indicates a disappointment in performance regarding the intended application but can still be useful for wireless communication between sensor nodes. The report also points out the importance of using a high performance micro controller for achieving high accuracy in measurements.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-39498 |
Date | January 2018 |
Creators | Persson, Anders |
Publisher | Mälardalens högskola, Akademin för innovation, design och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds