Le tri et le transport efficace des hydrolases acides vers le lysosome jouent un rôle critique pour la fonction des cellules. Plus de 50 maladies humaines sont dues à des mutations des enzymes lysosomales, des protéines régulant des processus-clés du transport vers le lysosome ou des enzymes effectuant des modifications posttraductionnelles importantes pour la fonction du lysosome. L’objectif de cette thèse est d’identifier des protéines et des mécanismes permettant à la cellule de réguler le transport des enzymes vers le lysosome. Nous avons formulé l’hypothèse que des protéines mutées dans des maladies lysosomales et dont les fonctions étaient inconnues pouvaient jouer un rôle dans le transport vers le lysosome. Les céroïdes-lipofuscinoses neuronales forment une famille de maladies lysosomales rares mais sont aussi les maladies neurodégénératives infantiles les plus fréquentes. Plusieurs gènes impliqués dans les NCL encodent des protéines aux fonctions inconnues. Les travaux présentés dans cette thèse ont identifié la protéine « ceroid lipofuscinosis neuronal-5 » (CLN5) qui est localisée à l’endosome et au lysosome comme élément nécessaire au recrutement et à l’activation de rab7. Rab7 est une protéine Rab-clé qui contrôle le trafic à l’endosome tardif. Cette petite GTPase est impliquée dans le recrutement de retromer, un complexe protéique qui régule le trafic de l’endosome vers l’appareil de Golgi des récepteurs de tri lysosomal comme sortilin et le récepteur du mannose-6-phosphate. Dans les cellules où CLN5 est déplété, les récepteurs de tri lysosomal sont moins recyclés plus rapidement dégradés. En utilisant des expériences de photomarquage nous avons aussi pu démontrer que Rab7 est moins activées en l’absence de CLN5. Pour exécuter leur fonction les protéines rabs doivent être recrutée à la membrane et activées par l’échange d’une molécule de GDP pour une molécule de GTP. Le recrutement des Rabs à la membrane nécessite une modification posttraductionnelle lipidique pour être facilités. En utilisant un modèle de levures nous avons démontré que l’homologue de Rab7, Ypt7 est palmitoylée. Nous avons aussi démontré que la palmitoyltransférase Swif1 est nécessaire au recrutement de Ypt7 à la membrane. Nous avons aussi remarqué que les sous- unités de retromer chez la levure sont moins recrutées lorsque les palmitoyltransférases sont déplétées. Dans les cellules de mammifères nous avons démontré que Rab7 est également palmitoylé et que cette palmitoylation est possiblement effectuée par les palmitoyltransférases DHHC1 et DHHC8. La palmitoylation de Rab7 a lieu sur les cystéines en C-terminal qui sont nécessaires au recrutement membranaire et qui auparavant étaient uniquement décrites comme prénylées. En utilisant la méthode de « click chemistry » nous avons découvert que lorsque la prénylation de Rab7 est bloquée le niveau de palmitoylation augmente. Pour caractériser l’interaction entre CLN5 et Rab7 nous avons performé des expériences afin d’établir définitivement la topologie de cette protéine. Nous avons ainsi démontré que CLN5 est une protéine hautement glycosylée qui est initialement traduite en protéine transmembranaire et subséquemment clivée par un membre de la famille des peptidase de peptide signal (SPP). Cette protéine soluble peut alors possiblement interagir avec CLN3 qui est aussi palmitoylée pour recruter et activer Rab7. Nos études suggèrent pour la première fois que CLN5 pourrait être un recruteur et un activateur de Rab7 qui agirait avec la protéine CLN3 pour séquestrer Rab7 avec les autres récepteurs palmitoylés et permettre leur recyclage vers l’appareil de Golgi. / The proper sorting and trafficking of acid hydrolases plays a critical role in the normal function of cells. Over 50 known human diseases are caused by mutations of lysosomal enzymes, of proteins that regulate key processes of transport to the lysosome or of enzymes that perform posttranslational modifications which are important for the function of the lysosome. The main objective of this thesis is to identify proteins and mechanisms that allow the cell to regulate the transport of enzymes toward the lysosome. We formulated the hypothesis that proteins mutated in lysosomal diseases and that have no known functions could play a role in transport toward the lysosome. Neuronal ceroid-lipofuscinoses form a family of lysosomal storage disorders that are very rare but are also the most frequent infantile neurodegenerative diseases. The work presented in this thesis identified ceroid-lipofuscinosis neuronal-5 (CLN5), which is located at the late-endosomal/lysosomal compartment as a necessary element for the recruitment and activation of Rab7. Rab7 is an important GTPase that controls traffic from the late-endosome to the trans-Golgi network. Rab7 has been implicated in the recruitment of the retromer complex, which regulates retrograde transport of the lysosomal sorting receptor such as sortilin and the mannose-6-phosphate receptor. In the cells where CLN5 is depleted, the lysosomal sorting receptors are less recycled and degraded more rapidly. Using photolabelling assays we were also able to show that Rab7 is less activated in the absence of CLN5. To perform their function, Rab proteins have to be recruited to membranes and activated by the exchange of a GDP nucleotide for GTP. The recruitment of Rabs to membranes necessitates a lipidic posttranslational modification to raise the affinity. Using yeast as a model we demonstrated that the Rab7 homolog, Ypt7 is palmitoylated. We have also showed that the yeast palmitoyltransferase Swif1 is required for Ypt7 membrane recruitment. We have also observed that retromer subunits in yeast are less recruited when palmitoyltranferases are depleted. In mammals we have shown that Rab7 is also palmitoylated and that this palmitoylation may be done by palmitoyltransferases DHHC1 and DHHC8. The palmitoylation of Rab7 occurs on the C-terminal cysteines that are required for membrane recruitment and were previously only shown to be prenylated. By using Click chemistry we have discovered that when Rab7 prenylation is blocked the level of palmitoylation is augmented. To characterize the interaction of Rab7 and CLN5 we performed experiments to definitively establish the topology of this latter protein. Our results show that CLN5 is a heavily glycosylated protein that is initially translated as a type II transmembrane protein and subsequently cleaved by a member of the signal-peptide peptidase (SPP) family. This protein can then possibly interact with another member of the CLN family, CLN3 that is predicted to be palmitoylated to recruit and activate Rab7. Our studies establish for the first time that CLN5 is required for the recruitment and activation of Rab7 and may cooperate with the possibly palmitoylated protein CLN3 to sequester Rab7 in specific membrane domains with sorting receptors to allow their recycling toward the trans-Golgi network.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/13029 |
Date | 04 1900 |
Creators | Jules, Felix |
Contributors | Manjunath, Puttaswamy, Lefrancois, Stephane |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.003 seconds