Une des méthodes utilisées pour étudier la ferroélectricité à l'échelle nanométrique dans les couches minces est la technique appelée « Piezoresponse Force Microscopy » (PFM). La PFM est un mode dérivé de l’AFM (Atomic Force Microscopy) en mode contact. Cette technique est basée sur l’effet piézoélectrique inverse : lorsqu’on applique un champ électrique sur un matériau piézoélectrique celui-ci se déforme. La pointe est posée sur la surface et mesure donc une déformation locale due à la tension appliquée. Les résultats obtenus par PFM sur des couches minces deviennent difficiles à interpréter dès lors que des charges d’origine non ferroélectriques (différentes de la charge de polarisation) entrent en jeu : charges électroniques piégées dans l’oxyde après l’injection de courant dues aux courants de fuite, charges déjà présentes dans la couche, les charges de surface, ainsi que les différents phénomènes électrochimiques due à la présence de la couche d’eau sous la pointe lors des mesures sous atmosphère ambiante. Le but de ce travail de thèse est de montrer que dans le cas de couches très minces les courants de fuite et les phénomènes électrochimiques peuvent conduire à l’interprétation de résultat PFM erroné. Des mesures PFM ont été réalisées sur des couches minces de PbZrTiO3, BaTiO3 et des nanostructures de BiFeO3 ferroélectriques. Les paramètres de mesure utilisés en PFM sont discutés avec une attention particulière sur la première résonance de contact qui permet d’amplifier le signal PFM. L’impact des phénomènes électrochimiques sur le contraste en PFM est discuté et mis en évidence d’un point de vue expérimentale. Des images PFM sur des couches minces non-ferroélectriques sont obtenues semblable à celle obtenues lors de l’utilisation d’une procédure standard sur des échantillons ferroélectriques. Ces images sont réalisées sur des couches minces d’aluminate de lanthane (LaAlO3), d'oxyde de Gadolinium (Gd2O3) et d’oxyde de Silicium (SiO2). Les motifs obtenus sur le LaAlO3 et le Gd2O3, similaires à des domaines de polarisation opposés, tiennent dans le temps sous atmosphère ambiante. Ces mesures sont comparées avec des résultats obtenus sur des couches minces de BaTiO3 préparées par MBE (Molecular Beam Epitaxy). Différentes méthodes de caractérisation électriques à l’échelle macroscopique sont présentées afin de confirmer la ferroélectricité des couches minces étudiées dans cette thèse. L'objectif est de disposer d'une procédure permettant d'affirmer qu'un échantillon dont on ne sait rien est ou n'est pas ferroélectrique. / Piezoresponse Force Microscopy (PFM) is a powerful tool for the characterization of ferroelectric materials thanks to its ability to map and control in a non destructive way domain structures in ferroelectric films. Most of the time, the ferroelectric behaviour of a film is tested by writing domains of opposite polarization with the Atomic Force Microscope (AFM) tip and/or by performing hysteresis loops with the AFM tip as a top electrode. A given sample is declared ferroelectric when domains of opposite direction have been detected; corresponding to zones of distinct contrast on the PFM image, or when an open hysteresis loop is obtained. More prudently in certain cases, the ferroelectricity is at last attested only when the contrast is stable within several hours. But as the thickness of the films studied by PFM decrease, data become difficult to interpret. In particular, charges trapped after current injection due to leakage currents and electrochemical phenomena due to the water layer under the tip may contribute in a non-negligible way to the final contrast of PFM images. In this thesis, some PFM measurements are performed on ferroelectric PbZrTiO3, BaTiO3 thin films and BiFeO3 nanostructures. Different parameters used in PFM measurements are discussed with special attention on the buckling first harmonic PFM measurements which allow the amplification of the PFM signal. The impact of electrochemical effects on the PFM contrast are discussed and are shown experimentally. Then, the standard procedure which is used in order to show the ferroelectricity of a film is applied to a non-ferroelectric sample with apparently the same results. To do so, we use a LaAlO3, Gd2O3 and SiO2 amorphous dielectric films and apply similar voltages as for artificially written ferroelectric domains. The resulting pattern is imaged by PFM and exhibit zones of distinct PFM contrasts, stable with time, similar to the one obtained with ferroelectric samples. These results are explained and is compared with results obtained on BaTiO3 thin films prepared by Molecular Beam Epitaxy which are supposed to be ferroelectric. In order to confirm the ferroelectricity of our thin films, several macroscopic electrical techniques are introduced. The aim of this study is to establish a reliable procedure which would remove any ambiguity in the characterization of the ferroelectric nature of such samples.
Identifer | oai:union.ndltd.org:theses.fr/2013ISAL0167 |
Date | 20 December 2013 |
Creators | Borowiak, Alexis |
Contributors | Lyon, INSA, Gautier, Brice, Baboux, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0033 seconds