• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and local physical properties of relaxor ferroelectric thin films /

Melo, Michael de. January 2017 (has links)
Orientador: Eudes Borges de Araújo / Resumo: Polycrystalline thin films of Pb0.91La0.09Zr0.65Ti0.35O3 (PLZT9/65/35) and Sr0.75Ba0.25Nb2O6 (SBN75) were prepared by the chemical polymeric routine in order to investigate their physical properties at the macro- and nanoscale. X-ray diffraction (XRD), piezoresponse force microscopy (PFM), and scanning electron microscopy (SEM) were used as investigative tools. PLZT9/65/35 and SBN75 thin films have exhibited perovskite and tungsten bronze crystal structure at room temperature, as it was expected in this nominal composition for these relaxor ferroelectric materials. In addition, Rietveld method of the crystalline structure has revealed the thickness dependence of the crystallite size, grain size, and microstrain. The transition temperature of SBN thin film showed to shift to lower temperatures, suggesting the presence of a higher defect concentration, such as oxygen vacancies, chemical disorder, and lattice defects in this film. SEM has exhibited the porosity features in both thin films and has confirmed the existence of chemical elements (such as oxygen, niobium, lanthanum, strontium, platinum, silicon and barium) in film surface and near the substrate. Ferroelectric properties have been investigated by PFM and the results have suggested a thickness and crystallite size dependence of the piezoelectric response. Also in this work, the dynamic of ferroelectric domain switching and the induced domain relaxation were studied using the switching spectroscopy PFM (SS-PFM) in both r... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
2

Structural and local physical properties of relaxor ferroelectric thin films / Propriedades físicas e estruturais de filmes finos ferroelétricos relaxores

Melo, Michael de [UNESP] 11 September 2017 (has links)
Submitted by MICHAEL DE MELO null (michaeldemelo@hotmail.com) on 2017-09-28T20:19:34Z No. of bitstreams: 1 Tese_Versão de Correção_Final_6_ultima.pdf: 5448253 bytes, checksum: 719d0e92c6a574eea487ee70a3b68542 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-29T18:01:11Z (GMT) No. of bitstreams: 1 melo_m_dr_ilha.pdf: 5511619 bytes, checksum: 89580a7f6e20d2c6d9a389aa1939e9e1 (MD5) / Made available in DSpace on 2017-09-29T18:01:11Z (GMT). No. of bitstreams: 1 melo_m_dr_ilha.pdf: 5511619 bytes, checksum: 89580a7f6e20d2c6d9a389aa1939e9e1 (MD5) Previous issue date: 2017-09-11 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Polycrystalline thin films of Pb0.91La0.09Zr0.65Ti0.35O3 (PLZT9/65/35) and Sr0.75Ba0.25Nb2O6 (SBN75) were prepared by the chemical polymeric routine in order to investigate their physical properties at the macro- and nanoscale. X-ray diffraction (XRD), piezoresponse force microscopy (PFM), and scanning electron microscopy (SEM) were used as investigative tools. PLZT9/65/35 and SBN75 thin films have exhibited perovskite and tungsten bronze crystal structure at room temperature, as it was expected in this nominal composition for these relaxor ferroelectric materials. In addition, Rietveld method of the crystalline structure has revealed the thickness dependence of the crystallite size, grain size, and microstrain. The transition temperature of SBN thin film showed to shift to lower temperatures, suggesting the presence of a higher defect concentration, such as oxygen vacancies, chemical disorder, and lattice defects in this film. SEM has exhibited the porosity features in both thin films and has confirmed the existence of chemical elements (such as oxygen, niobium, lanthanum, strontium, platinum, silicon and barium) in film surface and near the substrate. Ferroelectric properties have been investigated by PFM and the results have suggested a thickness and crystallite size dependence of the piezoelectric response. Also in this work, the dynamic of ferroelectric domain switching and the induced domain relaxation were studied using the switching spectroscopy PFM (SS-PFM) in both relaxor systems as a function of variable DC applied voltages and pulse durations. / Filmes policristalinos de Pb0,91La0,09Zr0,65Ti0,35O3 (PLZT9/65/35) e de Sr0,75Ba0,25Nb2O6 (SBN75) foram preparados por uma rotina química polimérica para investigarmos as suas propriedades em nano- e macroescala. Difração de raios-X (DRX), microscopia de força atômica de piezoresposta (PFM), e microscopia eletrônica de varredura (SEM), foram utilizados como ferramentas investigativas. Os filmes finos de PLZT9/65/35 e de SBN75 exibiram estrutura peroviskita e tungstênio bronze, respectivamente, conforme esperado à temperatura ambiente e na composição nominal para estes materiais ferroelétricos relaxores. Além disso, o refinamento de Rietveld da estrutura revelou a dependência do tamanho do cristalito e do microstrain com a espessura. A temperatura de transição de fase do filme de SBN mostrou um deslocamento para valores menores de temperatura, sugerindo a presença de concentração de defeitos, tais como vacâncias de oxigênio, desordem química e defeitos de rede, maior no filme de SBN. Microscopia eletrônica de varredura (SEM) exibiu o caráter poroso de ambos os filmes. Propriedades ferroelétricas desses filmes foram investigados por meio da técnica de PFM. A piezoresposta mostrou ter uma dependência em função do tamanho do cristalito e da espessura. Neste trabalho, a dinâmica de reversão de domínios ferroelétricos e a relaxação de domínios induzidos foram estudados por meio do uso da espectroscopia de chaveamento (SS-PFM) em ambos os sistemas em função da tensão DC e do tempo de duração do pulso. / CNPq: 232241/2014-7
3

Cinétique de formation et stabilité des domaines ferroélectriques créés par un Microscope à Force Atomique : étude de films minces monocristallins de LiTaO3 en vue d'applications mémoires

Brugère, Antoine 14 January 2011 (has links) (PDF)
Les matériaux ferroélectriques sont caractérisés par l'existence d'une polarisation électrique spontanée, dont l'orientation peut être inversée par l'application d'un champ électrique adéquat. Permettant de coder l'information sous la forme d'un domaine ferroélectrique, i.e. une région du matériau avec une certaine orientation de la polarisation, les ferroélectriques ouvrent la voie au stockage de masse de très haute densité (>10 Tbit/in ²). Dans ce contexte, nous avons employé la Piezoresponse Force Microscopy (PFM), un mode particulier de Microscope à Force Atomique (AFM), permettant la manipulation et la détection des domaines ferroélectriques à l'échelle du nanomètre. Avec pour objectif d'étudier les mécanismes de formation des domaines par l'intermédiaire d'une pointe AFM, nos travaux ont mis en valeur la cinétique de croissance des domaines dans des films minces monocristallins de LiTaO3, avec une approche complémentaire de celle thermodynamique, dépendante du champ électrique et soulignant le rôle de l'humidité dans une possible conduction de surface. En parallèle, les films de LiTaO3 ont permis d'appréhender davantage la nature électro-mécanique de la réponse PFM, pour notamment relier l'amplitude du signal mesuré à la géométrie du domaine sous pointe. PFM et domaines ferroélectriques se sont en effet révélés tour à tour, objet d'étude et outil de caractérisation.
4

Caractérisation électrique multi-échelle d'oxydes minces ferroélectriques / Multi-scale electrical characterization of ferroelectric thin films

Martin, Simon 12 December 2016 (has links)
Les matériaux ferroélectriques sont des matériaux qui possèdent une polarisation spontanée en l'absence de champ électrique, leur conférant plusieurs propriétés intéressantes du point de vue des applications possibles. La réduction de l'épaisseur des couches ferroélectriques vers des films minces et ultra-minces s'est avérée nécessaire notamment en vue de leur intégration dans les dispositifs de la micro et nano-électronique. Cependant, cette diminution a fait apparaître certains phénomènes indésirables au sein des couches minces tels que les courants de fuite. La caractérisation électrique de ces matériaux reste donc un défi afin de comprendre les mécanismes physiques en jeu dans ces films, d'autant qu'une information à l'échelle très locale est maintenant requise. Il est donc nécessaire de faire progresser les techniques de mesure électrique pour atteindre ces objectifs. Durant cette thèse, nous mesurons la polarisation diélectrique de l'échelle mésoscopique jusqu'à l'échelle nanométrique en utilisant des caractérisations purement électriques constituées de mesures Polarisation-Tension, Capacité-Tension et Courant-Tension mais aussi des mesures électromécaniques assurées par une technique dérivée de la microscopie à force atomique et nommée Piezoresponse Force Microscopy. Au cours de nos travaux, nous montrons la limite de certaines techniques de caractérisation classiques ainsi que les artéfacts affectant la mesure électrique ou électromécanique et pouvant mener à une mauvaise interprétation des résultats de mesure. Afin de pousser nos investigations plus loin, nous avons développé de nouvelles techniques de mesure pour s'affranchir de certains signaux parasites dont nous exposerons le principe de fonctionnement. Nous présentons les premières mesures directes de polarisation rémanente à l'échelle du nanomètre grâce à une technique que nous nommons nano-PUND. Ces techniques et méthodes sont appliquées à une variété importante de matériaux tels que Pb(Zr,Ti)O3, GaFeO3 ou BaTiO3 dont, pour certains, la ferroélectricité n'a jamais été démontrée expérimentalement sans ambiguïté. / Ferroelectric materials show a spontaneous dielectric polarisation even in the absence of applied electric field, which confers them interesting possibilities of applications. The reduction of the thickness of ferroelectric layers towards ultra-thin values has been necessary in view of their integration in micro and nano-electronic devices. However, the reduction of thickness has been accompanied by unwanted phenomena in thin layers such as tunneling currents and more generally leakage currents. The electrical characterization of these materials remains a challenge which aims at better understanding the physical mechanisms at play, and requires now a nanometric spatial resolution. To do so, it is thus mandatory to enhance the techniques of electrical measurement. In this work, we measure the dielectric polarisation of ferroelectric films from mesoscopic scale down to the nanometric scale using purely electric characterisation techniques (Polarisation vs Voltage, Capacitance vs Voltage, Current vs Voltage), but also electro-mechanical techniques like Piezoresponse Force Microscopy which derives from Atomic Force Microscopy. We show the limits of several classical techniques as well as the artefacts which affect electrical or electro-mechanical measurement and may lead to an incorrect interpretation of the data. In order to push the investigation further, we have developed and we describe new measurement techniques which aim at avoiding some parasitic signals. We present the first direct measurement of the remnent polarisation at the nanoscale thanks to a technique which we call « nano-PUND ». These techniques and methods are applied to a large variety of materials like Pb(Zr,Ti)O3, GaFeO3 or BaTiO3 which (for some of them), ferroelectricity has not been measured experimentally.
5

Cinétique de formation et stabilité des domaines ferroélectriques créés par un Microscope à Force Atomique : étude de films minces monocristallins de LiTaO3 en vue d'applications mémoires / Growth and stability of ferroelectric domains in the field of an atomic force microscope : study of single crystal thin films of LiTaO3 for memory application

Brugère, Antoine 14 January 2011 (has links)
Les matériaux ferroélectriques sont caractérisés par l'existence d'une polarisation électrique spontanée, dont l'orientation peut être inversée par l'application d'un champ électrique adéquat. Permettant de coder l'information sous la forme d'un domaine ferroélectrique, i.e. une région du matériau avec une certaine orientation de la polarisation, les ferroélectriques ouvrent la voie au stockage de masse de très haute densité (>10 Tbit/in ²). Dans ce contexte, nous avons employé la Piezoresponse Force Microscopy (PFM), un mode particulier de Microscope à Force Atomique (AFM), permettant la manipulation et la détection des domaines ferroélectriques à l'échelle du nanomètre. Avec pour objectif d'étudier les mécanismes de formation des domaines par l'intermédiaire d'une pointe AFM, nos travaux ont mis en valeur la cinétique de croissance des domaines dans des films minces monocristallins de LiTaO3, avec une approche complémentaire de celle thermodynamique, dépendante du champ électrique et soulignant le rôle de l'humidité dans une possible conduction de surface. En parallèle, les films de LiTaO3 ont permis d'appréhender davantage la nature électro-mécanique de la réponse PFM, pour notamment relier l'amplitude du signal mesuré à la géométrie du domaine sous pointe. PFM et domaines ferroélectriques se sont en effet révélés tour à tour, objet d'étude et outil de caractérisation. / Ferroelectric materials are characterized by their spontaneous polarization, whose direction can be reversed by the application of a suitable electric field. Using domains, i.e. regions of uniform polarization orientation, as information bits, ferroelectrics opens the pathway towards ultrahigh storage densities (>10 Tbit/in²). In this respect, Piezoresponse Force Microscopy (PFM), a technique derived from Atomic Force Microscopy (AFM), was used to manipulate and detect ferroelectric domains on the nanometer scale. Our study was focused on the domains formation mechanism in the local electric field of a nanosized tip. Within an approach complementary to the thermodynamic one, we underlined the kinetics of domains growth in single-crystal LiTaO3 thin films, and the role of humidity in a possible surface conduction. In parallel, the LiTaO3 thin films were used to better understand the PFM response, in particular the relation between the measured signal and the geometry of the domain below the tip. This way, PFM and ferroelectrics domains alternately appeared as object of study and characterization tool.
6

Contribution à la compréhension du contraste lors de la caractérisation à l'échelle nanométrique des couches minces ferroélectriques par Piezoresponse Force Microscopy / Contribution to the understanding of the contrast during the characterization at the nanoscale of ferroelectric thin films by piezoresponse force microscopy

Borowiak, Alexis 20 December 2013 (has links)
Une des méthodes utilisées pour étudier la ferroélectricité à l'échelle nanométrique dans les couches minces est la technique appelée « Piezoresponse Force Microscopy » (PFM). La PFM est un mode dérivé de l’AFM (Atomic Force Microscopy) en mode contact. Cette technique est basée sur l’effet piézoélectrique inverse : lorsqu’on applique un champ électrique sur un matériau piézoélectrique celui-ci se déforme. La pointe est posée sur la surface et mesure donc une déformation locale due à la tension appliquée. Les résultats obtenus par PFM sur des couches minces deviennent difficiles à interpréter dès lors que des charges d’origine non ferroélectriques (différentes de la charge de polarisation) entrent en jeu : charges électroniques piégées dans l’oxyde après l’injection de courant dues aux courants de fuite, charges déjà présentes dans la couche, les charges de surface, ainsi que les différents phénomènes électrochimiques due à la présence de la couche d’eau sous la pointe lors des mesures sous atmosphère ambiante. Le but de ce travail de thèse est de montrer que dans le cas de couches très minces les courants de fuite et les phénomènes électrochimiques peuvent conduire à l’interprétation de résultat PFM erroné. Des mesures PFM ont été réalisées sur des couches minces de PbZrTiO3, BaTiO3 et des nanostructures de BiFeO3 ferroélectriques. Les paramètres de mesure utilisés en PFM sont discutés avec une attention particulière sur la première résonance de contact qui permet d’amplifier le signal PFM. L’impact des phénomènes électrochimiques sur le contraste en PFM est discuté et mis en évidence d’un point de vue expérimentale. Des images PFM sur des couches minces non-ferroélectriques sont obtenues semblable à celle obtenues lors de l’utilisation d’une procédure standard sur des échantillons ferroélectriques. Ces images sont réalisées sur des couches minces d’aluminate de lanthane (LaAlO3), d'oxyde de Gadolinium (Gd2O3) et d’oxyde de Silicium (SiO2). Les motifs obtenus sur le LaAlO3 et le Gd2O3, similaires à des domaines de polarisation opposés, tiennent dans le temps sous atmosphère ambiante. Ces mesures sont comparées avec des résultats obtenus sur des couches minces de BaTiO3 préparées par MBE (Molecular Beam Epitaxy). Différentes méthodes de caractérisation électriques à l’échelle macroscopique sont présentées afin de confirmer la ferroélectricité des couches minces étudiées dans cette thèse. L'objectif est de disposer d'une procédure permettant d'affirmer qu'un échantillon dont on ne sait rien est ou n'est pas ferroélectrique. / Piezoresponse Force Microscopy (PFM) is a powerful tool for the characterization of ferroelectric materials thanks to its ability to map and control in a non destructive way domain structures in ferroelectric films. Most of the time, the ferroelectric behaviour of a film is tested by writing domains of opposite polarization with the Atomic Force Microscope (AFM) tip and/or by performing hysteresis loops with the AFM tip as a top electrode. A given sample is declared ferroelectric when domains of opposite direction have been detected; corresponding to zones of distinct contrast on the PFM image, or when an open hysteresis loop is obtained. More prudently in certain cases, the ferroelectricity is at last attested only when the contrast is stable within several hours. But as the thickness of the films studied by PFM decrease, data become difficult to interpret. In particular, charges trapped after current injection due to leakage currents and electrochemical phenomena due to the water layer under the tip may contribute in a non-negligible way to the final contrast of PFM images. In this thesis, some PFM measurements are performed on ferroelectric PbZrTiO3, BaTiO3 thin films and BiFeO3 nanostructures. Different parameters used in PFM measurements are discussed with special attention on the buckling first harmonic PFM measurements which allow the amplification of the PFM signal. The impact of electrochemical effects on the PFM contrast are discussed and are shown experimentally. Then, the standard procedure which is used in order to show the ferroelectricity of a film is applied to a non-ferroelectric sample with apparently the same results. To do so, we use a LaAlO3, Gd2O3 and SiO2 amorphous dielectric films and apply similar voltages as for artificially written ferroelectric domains. The resulting pattern is imaged by PFM and exhibit zones of distinct PFM contrasts, stable with time, similar to the one obtained with ferroelectric samples. These results are explained and is compared with results obtained on BaTiO3 thin films prepared by Molecular Beam Epitaxy which are supposed to be ferroelectric. In order to confirm the ferroelectricity of our thin films, several macroscopic electrical techniques are introduced. The aim of this study is to establish a reliable procedure which would remove any ambiguity in the characterization of the ferroelectric nature of such samples.

Page generated in 0.0958 seconds