Return to search

Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized Zirconia

The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./20435
Date23 November 2011
CreatorsKim, Jong Min
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.0485 seconds