Return to search

Estabilidade assintótica de uma classe de equações quasilineares viscoelásticas com história / Asymptotic stability for a class of quasilinear viscoelastic equations with past history

Este trabalho é dedicado ao estudo do comportamento a longo prazo de uma classe de equações viscoelásticas não lineares com memória, da forma |\'upsilon IND. t\'| POT. ho\' \'upsilon IND. tt\' - DELTA \'upsilon\' - \'DELTA upsilon IND. tt\' + \'INT. SUP. t INF. \\tau\' upsilon (t- s) \'DELTA epsilon\' (s) ds = h, \'\\tau\' > 0, definida num domínio limitado de \'R POT. N\'. Tal classe de problemas foi estudada por diversos autores desde 2001, com \'\\tau = 0. Os resultados existentes são principalmente devotados à existência de soluções globais, decaimento da energia, com ou sem dissipações adicionais, existência com dados pequenos, entre outros. Entretanto, a questão da unicidade de soluções e existência de atratores globais não foram discutidas em trabalhos anteriores. No presente trabalho, apresentamos resultados de unicidade e existência de atratores globais para essa classe de problemas num contexto mais geral, incluindo o caso em que \'\\tau\' = -\'INFINITO\'. Além disso, incluímos um problema complementar, de quarta ordem onde estudamos a existência de atratores exponenciais / This work is concerned with the long-time behaviour of a class nonlinear viscoelastic equations of the form |\'upsilon IND. t\'| POT. ho\' \'upsilon IND. tt\' - DELTA \'upsilon\' - \'DELTA upsilon IND. tt\' + \'INT. SUP. t INF. \\tau\' upsilon (t- s) \'DELTA epsilon\' (s) ds = h, \'ho\' > 0, defined in a bounded domain of \'R POT. N\'. Such class of problems was studied by several authors since 2001, with \'\\tau\' = 0. Existing results are mainly devoted to global existence, energy decay, with or without additional dampings, existence with small data, among others. However, uniqueness and existence of global attractors were not considered previously. In the present work, we establish some results on the uniqueness of solutions and existence of global attractors in a more general setting, including \'\\tau\' = - \'INFINITY\'. In addition, we have added a second problem concerned with a fourth order equation where we study the existence of exponential attractors

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06112013-165332
Date23 August 2013
CreatorsAraujo, Rawlilson de Oliveira
ContributorsFu, Ma To
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0066 seconds