Return to search

Algorithmes de mise à l'échelle et méthodes tropicales en analyse numérique matricielle

L'Algèbre tropicale peut être considérée comme un domaine relativement nouveau en mathématiques. Elle apparait dans plusieurs domaines telles que l'optimisation, la synchronisation de la production et du transport, les systèmes à événements discrets, le contrôle optimal, la recherche opérationnelle, etc. La première partie de ce manuscrit est consacrée a l'étude des applications de l'algèbre tropicale à l'analyse numérique matricielle. Nous considérons tout d'abord le problème classique de l'estimation des racines d'un polynôme univarié. Nous prouvons plusieurs nouvelles bornes pour la valeur absolue des racines d'un polynôme en exploitant les méthodes tropicales. Ces résultats sont particulièrement utiles lorsque l'on considère des polynômes dont les coefficients ont des ordres de grandeur différents. Nous examinons ensuite le problème du calcul des valeurs propres d'une matrice polynomiale. Ici, nous introduisons une technique de mise à l'échelle générale, basée sur l'algèbre tropicale, qui s'applique en particulier à la forme compagnon. Cette mise à l'échelle est basée sur la construction d'une fonction polynomiale tropicale auxiliaire, ne dépendant que de la norme des matrices. Les raciness (les points de non-différentiabilité) de ce polynôme tropical fournissent une pré-estimation de la valeur absolue des valeurs propres. Ceci se justifie en particulier par un nouveau résultat montrant que sous certaines hypothèses faites sur le conditionnement, il existe un groupe de valeurs propres bornées en norme. L'ordre de grandeur de ces bornes est fourni par la plus grande racine du polynôme tropical auxiliaire. Un résultat similaire est valable pour un groupe de petites valeurs propres. Nous montrons expérimentalement que cette mise à l'échelle améliore la stabilité numérique, en particulier dans des situations où les données ont des ordres de grandeur différents. Nous étudions également le problème du calcul des valeurs propres tropicales (les points de non-différentiabilité du polynôme caractéristique) d'une matrice polynômiale tropicale. Du point de vue combinatoire, ce problème est équivalent à trouver une fonction de couplage: la valeur d'un couplage de poids maximum dans un graphe biparti dont les arcs sont valués par des fonctions convexes et linéaires par morceaux. Nous avons développé un algorithme qui calcule ces valeurs propres tropicales en temps polynomial. Dans la deuxième partie de cette thèse, nous nous intéressons à la résolution de problèmes d'affectation optimale de très grande taille, pour lesquels les algorithms séquentiels classiques ne sont pas efficaces. Nous proposons une nouvelle approche qui exploite le lien entre le problème d'affectation optimale et le problème de maximisation d'entropie. Cette approche conduit à un algorithme de prétraitement pour le problème d'affectation optimale qui est basé sur une méthode itérative qui élimine les entrées n'appartenant pas à une affectation optimale. Nous considérons deux variantes itératives de l'algorithme de prétraitement, l'une utilise la méthode Sinkhorn et l'autre utilise la méthode de Newton. Cet algorithme de prétraitement ramène le problème initial à un problème beaucoup plus petit en termes de besoins en mémoire. Nous introduisons également une nouvelle méthode itérative basée sur une modification de l'algorithme Sinkhorn, dans lequel un paramètre de déformation est lentement augmenté. Nous prouvons que cette méthode itérative(itération de Sinkhorn déformée) converge vers une matrice dont les entrées non nulles sont exactement celles qui appartiennent aux permutations optimales. Une estimation du taux de convergence est également présentée.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00643836
Date01 September 2011
CreatorsSharify, Meisam
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds