Spelling suggestions: "subject:"roots off polynomial"" "subject:"roots oof polynomial""
1 |
Algorithmes de mise à l'échelle et méthodes tropicales en analyse numérique matricielleSharify, Meisam 01 September 2011 (has links) (PDF)
L'Algèbre tropicale peut être considérée comme un domaine relativement nouveau en mathématiques. Elle apparait dans plusieurs domaines telles que l'optimisation, la synchronisation de la production et du transport, les systèmes à événements discrets, le contrôle optimal, la recherche opérationnelle, etc. La première partie de ce manuscrit est consacrée a l'étude des applications de l'algèbre tropicale à l'analyse numérique matricielle. Nous considérons tout d'abord le problème classique de l'estimation des racines d'un polynôme univarié. Nous prouvons plusieurs nouvelles bornes pour la valeur absolue des racines d'un polynôme en exploitant les méthodes tropicales. Ces résultats sont particulièrement utiles lorsque l'on considère des polynômes dont les coefficients ont des ordres de grandeur différents. Nous examinons ensuite le problème du calcul des valeurs propres d'une matrice polynomiale. Ici, nous introduisons une technique de mise à l'échelle générale, basée sur l'algèbre tropicale, qui s'applique en particulier à la forme compagnon. Cette mise à l'échelle est basée sur la construction d'une fonction polynomiale tropicale auxiliaire, ne dépendant que de la norme des matrices. Les raciness (les points de non-différentiabilité) de ce polynôme tropical fournissent une pré-estimation de la valeur absolue des valeurs propres. Ceci se justifie en particulier par un nouveau résultat montrant que sous certaines hypothèses faites sur le conditionnement, il existe un groupe de valeurs propres bornées en norme. L'ordre de grandeur de ces bornes est fourni par la plus grande racine du polynôme tropical auxiliaire. Un résultat similaire est valable pour un groupe de petites valeurs propres. Nous montrons expérimentalement que cette mise à l'échelle améliore la stabilité numérique, en particulier dans des situations où les données ont des ordres de grandeur différents. Nous étudions également le problème du calcul des valeurs propres tropicales (les points de non-différentiabilité du polynôme caractéristique) d'une matrice polynômiale tropicale. Du point de vue combinatoire, ce problème est équivalent à trouver une fonction de couplage: la valeur d'un couplage de poids maximum dans un graphe biparti dont les arcs sont valués par des fonctions convexes et linéaires par morceaux. Nous avons développé un algorithme qui calcule ces valeurs propres tropicales en temps polynomial. Dans la deuxième partie de cette thèse, nous nous intéressons à la résolution de problèmes d'affectation optimale de très grande taille, pour lesquels les algorithms séquentiels classiques ne sont pas efficaces. Nous proposons une nouvelle approche qui exploite le lien entre le problème d'affectation optimale et le problème de maximisation d'entropie. Cette approche conduit à un algorithme de prétraitement pour le problème d'affectation optimale qui est basé sur une méthode itérative qui élimine les entrées n'appartenant pas à une affectation optimale. Nous considérons deux variantes itératives de l'algorithme de prétraitement, l'une utilise la méthode Sinkhorn et l'autre utilise la méthode de Newton. Cet algorithme de prétraitement ramène le problème initial à un problème beaucoup plus petit en termes de besoins en mémoire. Nous introduisons également une nouvelle méthode itérative basée sur une modification de l'algorithme Sinkhorn, dans lequel un paramètre de déformation est lentement augmenté. Nous prouvons que cette méthode itérative(itération de Sinkhorn déformée) converge vers une matrice dont les entrées non nulles sont exactement celles qui appartiennent aux permutations optimales. Une estimation du taux de convergence est également présentée.
|
2 |
Το θεώρημα Tarski-Seidenberg : συνέπειες και μία διδακτική έρευνα στη θεωρία πολυωνύμων με πραγματικούς συντελεστέςΝταργαράς, Κωνσταντίνος 13 January 2015 (has links)
To αντικείμενο μελέτης της εργασίας αυτής είναι κατά μείζονα λόγο το θεώρημα Tarski-Seidenberg. Στο πρώτο κεφάλαιο μελετάμε το κίνητρο που ώθησε τον Tarski σε αυτή την έρευνα, εξιστορούμε την πορεία της ιδέας του από την ανακάλυψη μέχρι τη δημοσίευση και έπειτα προσπαθούμε να σκιαγραφήσουμε ευκρινώς τη συνολική επίδραση του θεωρήματος στα μαθηματικά και όχι μόνο. Για την ακρίβεια, αναφερόμαστε στην πληρότητα της Ευκλείδειας γεωμετρίας ως συνέπεια του θεωρήματος, στη συμβολή του θεωρήματος στην ανάπτυξη της ημιαλγεβρικής γεωμετρίας. Στο δεύτερο κεφάλαιο αποδικνύεται το εν λόγω θεώρημα, δηλαδή ότι η πρωτοβάθμια θεωρία των πραγματικώς κλειστών σωμάτων είναι πλήρης, με χρήση των θεωρημάτων Sturm και Sylvester. Στο τρίτο κεφάλαιο παρουσιάζεται μία διδακτική έρευνα με φοιτητές του τμήματος με σκοπό τη διάγνωση πιθανών γνωστικών κενών των φοιτητών σε θέματα της θεωρίας πολυωνύμων με πραγματικούς συντελεστές. / To study object of this work is a fortiori the Tarski-Seidenberg theorem. In the first chapter we study Tarski's motivation in this research, we recount the progress of the idea from the discovery until the publication, and then we try to outline clearly the overall effect of the theorem in mathematics and beyond. In fact, we refer to the completeness of Euclidean geometry as a consequence of the theorem, in its contribution to the development of semialgebraic geometry. In the second chapter we prove the Tarski-Seidenberg theorem, namely that the first order theory of real closed fields is actually complete, using the Sturm and Sylvester theorems. In the third chapter we present a teaching research on students of the Department in purpose to diagnose potential knowledge gaps of the students concerning the theory of polynomials with real coefficients.
|
Page generated in 0.1057 seconds