Spelling suggestions: "subject:"sturm's theorem"" "subject:"turm's theorem""
1 |
Teorema de Sturm e zeros de polinômios ortogonaisRafaeli, Fernando Rodrigo [UNESP] 16 February 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-02-16Bitstream added on 2014-06-13T19:34:53Z : No. of bitstreams: 1
rafaeli_fr_me_sjrp.pdf: 475737 bytes, checksum: dae8459d8e40a6b31ed9a1e30e8ab905 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho estudamos o Teorema de Sturm para zeros de soluções de equações diferenciais lineares de segunda ordem e suas extensões. Estes resultados clássicos são aplicados para análise de monotonicidade e convexidade de zeros de polinômios ortogonais clássicos. / We study Sturm's theorem on zeros of solution of linear second-order differential equations as well as its extension. These classical results are applied to analyze monotonicity and convexity of zeros of classical orthogonal polynomials.
|
2 |
Teorema de Sturm e zeros de polinômios ortogonais /Rafaeli, Fernando Rodrigo. January 2007 (has links)
Orientador: Dimitar Kolev Dimitrov / Banca: Valdir Antonio Menegatto / Banca: Alagocone Sri Ranga / Resumo: Neste trabalho estudamos o Teorema de Sturm para zeros de soluções de equações diferenciais lineares de segunda ordem e suas extensões. Estes resultados clássicos são aplicados para análise de monotonicidade e convexidade de zeros de polinômios ortogonais clássicos. / Abstract: We study Sturm's theorem on zeros of solution of linear second-order differential equations as well as its extension. These classical results are applied to analyze monotonicity and convexity of zeros of classical orthogonal polynomials. / Mestre
|
3 |
O teorema de comparação de Sturm e aplicações / Sturm comparison theorem and applicationsYen, Chi Lun, 1983- 09 May 2013 (has links)
Orientadores: Dimitar Kolev Dimitrov, Roberto Andreani / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-23T19:23:17Z (GMT). No. of bitstreams: 1
Yen_ChiLun_D.pdf: 3950162 bytes, checksum: 1812f3dd736abbe2d4ff070c7877fdff (MD5)
Previous issue date: 2013 / Resumo: O objetivo deste trabalho é apresentar uma nova formulação do Teorema de comparação de Sturm e suas aplicações na teoria dos zeros de polinômios ortogonais, que são: monotonicidade dos zeros dos polinômios ortogonais X1-Jacobi, desigualdades de Gautschi sobre os zeros dos polinômios ortogonais de Jacobi e o comportamento assintótico dos zeros dos polinômios ultrasféricos / Abstract: In this thesis we state a new formulation of the Sturm comparison Theorem and its applications to the zeros of orthogonal polynomials. Specifically, these applications deal with the monotonicity of zeros of X1-Jacobi orthogonal polynomials, Gautschi's conjectures about inequalities of zeros of Jacobi polynomials and the asymptotic of zeros of ultrasphricals polynomials / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
4 |
Algebraic certificates for Budan's theoremBembé, Daniel 02 August 2011 (has links) (PDF)
In this work we present two algebraic certificates for Budan's theorem. Budan's theorem claims the following. Let R be an ordered field, f in R[X] of degree n and a,b in R with a
|
5 |
Algebraic certificates for Budan's theorem / Certificats algébriques pour le théorème de BudanBembé, Daniel 02 August 2011 (has links)
Dans ce travail, nous présentons deux certificats algébriques pour le théorème de Budan. Le théorème de Budan s'énonce comme suit : Soit R un corps ordonné, f in R[X] de degré n et a,b in R avec a<b. Alors, le nombre de variations de signe dans la suite (f(b),f'(b),...,f^n(b)) n'est pas supérieur au nombre de variations de signe dans la séquence (f(a),f'(a),...,f^n(a)). Cela nous permet de compter des racines réelles d'une manière similaire au comptage des racines réelles par le théorème de Sturm. (Compter des racines réelles à la Budan est aujourd'hui connu comme Budan-Fourier count. En effet, il compte des racines dites virtuelles qui comprennent les racines réelles.) Un certificat algébrique pour le théoème de Budan est un certain type de preuve qui mène de la négation de l'hypothèse à l'identité algébrique contradictionelle 0>0. L'algorithme pour notre premier certificat est basé sur la preuve historique par Budan, qui utilise uniquement des arguments combinatoires. Il a une complexité exponentielle dans le degré de f. L'algorithme pour le deuxième certificat est basé sur des suites de Taylor mixtes et exhibe une plus petite complexité : Le calcul principal est la résolution d'un système linéaire, ce qui est polynomiale dans le degré de f / In this work we present two algebraic certificates for Budan's theorem. Budan's theorem claims the following. Let R be an ordered field, f in R[X] of degree n and a,b in R with a<b. Then the number of sign changes in the sequence (f(b),f'(b),...,f^n(b)) is not greater than the number of sign changes in the sequence (f(a),f'(a),...,f^n(a)). This enables us to count real roots in a similar way to the real root counting by Sturm's theorem. (Budan's count of real roots is today known as ``Budan-Fourier count'' which, indeed, counts so called virtual roots which comprehend the real roots.) An algebraic certificate for Budan's theorem is a certain kind of proof which leads from the negation of the assumption to the contradictory algebraic identity 0>0. The algorithm for our first certificate is based on the historical proof by Budan which uses only combinatorial arguments. It has a complexity exponential in the degree of f. The algorithm for the second certificate is based on mixed Taylor series and shows a smaller complexity: The main calculation is solving a linear system; this is polynomial in the degree of f.
|
6 |
Το θεώρημα Tarski-Seidenberg : συνέπειες και μία διδακτική έρευνα στη θεωρία πολυωνύμων με πραγματικούς συντελεστέςΝταργαράς, Κωνσταντίνος 13 January 2015 (has links)
To αντικείμενο μελέτης της εργασίας αυτής είναι κατά μείζονα λόγο το θεώρημα Tarski-Seidenberg. Στο πρώτο κεφάλαιο μελετάμε το κίνητρο που ώθησε τον Tarski σε αυτή την έρευνα, εξιστορούμε την πορεία της ιδέας του από την ανακάλυψη μέχρι τη δημοσίευση και έπειτα προσπαθούμε να σκιαγραφήσουμε ευκρινώς τη συνολική επίδραση του θεωρήματος στα μαθηματικά και όχι μόνο. Για την ακρίβεια, αναφερόμαστε στην πληρότητα της Ευκλείδειας γεωμετρίας ως συνέπεια του θεωρήματος, στη συμβολή του θεωρήματος στην ανάπτυξη της ημιαλγεβρικής γεωμετρίας. Στο δεύτερο κεφάλαιο αποδικνύεται το εν λόγω θεώρημα, δηλαδή ότι η πρωτοβάθμια θεωρία των πραγματικώς κλειστών σωμάτων είναι πλήρης, με χρήση των θεωρημάτων Sturm και Sylvester. Στο τρίτο κεφάλαιο παρουσιάζεται μία διδακτική έρευνα με φοιτητές του τμήματος με σκοπό τη διάγνωση πιθανών γνωστικών κενών των φοιτητών σε θέματα της θεωρίας πολυωνύμων με πραγματικούς συντελεστές. / To study object of this work is a fortiori the Tarski-Seidenberg theorem. In the first chapter we study Tarski's motivation in this research, we recount the progress of the idea from the discovery until the publication, and then we try to outline clearly the overall effect of the theorem in mathematics and beyond. In fact, we refer to the completeness of Euclidean geometry as a consequence of the theorem, in its contribution to the development of semialgebraic geometry. In the second chapter we prove the Tarski-Seidenberg theorem, namely that the first order theory of real closed fields is actually complete, using the Sturm and Sylvester theorems. In the third chapter we present a teaching research on students of the Department in purpose to diagnose potential knowledge gaps of the students concerning the theory of polynomials with real coefficients.
|
Page generated in 0.0615 seconds