Return to search

Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network / Bildklassificering för hjärntumör med hjälp av förtränat konvolutionellt neuralt nätverk

Brain tumor is a disease characterized by uncontrolled growth of abnormal cells in the brain. The brain is responsible for regulating the functions of all other organs, hence, any atypical growth of cells in the brain can have severe implications for its functions. The number of global mortality in 2020 led by cancerous brains was estimated at 251,329. However, early detection of brain cancer is critical for prompt treatment and improving patient’s quality of life as well as survival rates. Manual medical image classification in diagnosing diseases has been shown to be extremely time-consuming and labor-intensive. Convolutional Neural Networks (CNNs) has proven to be a leading algorithm in image classification outperforming humans. This paper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7, and ResNet-50 in terms of performance and accuracy using transfer learning. In addition, the authors discussed in this paper the economic impact of CNN, as an AI approach, on the healthcare sector. The models’ performance is demonstrated using functions for loss and accuracy rates as well as using the confusion matrix. The conducted experiment resulted in VGG-19 achieving best performance with 97% accuracy, while EffecientNetB7 achieved worst performance with 93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormala celler i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ, därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dess funktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till 251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandling och för att förbättra patienternas livskvalitet och överlevnadssannolikhet. Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sig vara extremt tidskrävande och arbetskrävande. Convolutional Neural Network (CNN) är en ledande algoritm för bildklassificering som har överträffat människor. Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet, EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterar författarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellens prestanda demonstrerades med hjälp av funktioner om förlust och noggrannhets värden samt med hjälp av en Confusion matris. Resultatet av det utförda experimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet, medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-336619
Date January 2023
CreatorsAlsabbagh, Bushra
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:357

Page generated in 0.0027 seconds