Analog circuit technology is of vital importance in today's world of electronic design. Increasing prevalence of mobile electronics necessitates the search for solutions which offer high performance given tight constraints on power and chip area. Field programmable arrays utilizing floating-gate technology are one possible solution to analog design. It offers the advantages of analog processing with the additional advantage of reconfigurability, giving the designer the ability to test new analog designs without costly and time-consuming fabrication and test cycles.
In this work, a new interface for FPAA's is demonstrated called Sim2spice, with which users can design signal processing systems in Matlab Simulink and compile them to SPICE circuit netlists. These netlists can be further compiled with a tool called GRASPER to a switch list for programming on an FPAA chip. Example library elements are shown, along with some compiled systems such as filters and vector-matrix multipliers.
One particularly compelling application of reconfigurable analog design is the field of neuromorphic circuits, which aims to reproduce the basic functional characteristics of biological neurons and synapses in analog integrated circuit technology. Simulink libraries have been built to allow designers to build neuromorphic systems on several FPAAs that have been developed expressly for the purpose of building neurons and connecting them in networks with synapses. Several possible dynamically learning synapses have also been explored.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/31820 |
Date | 18 November 2009 |
Creators | Petre, Csaba |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds