The aim of this thesis is to optimize the design of the Fat-IBC-based communication of a novel neuroprosthetic system in which a brain-machine interface is used to control a prosthetic arm. Fat-based intra-body communication (Fat-IBC) uses the fat tissue inside the body of the bearer as a transmission medium for low-power microwaves. Future projects will use the communication system and investigate ways to control the prosthetic arm directly from the brain. The finished system was able to individually control all movable joints of multiple prosthesis prototypes using information that was received wirelessly through Fat-IBC. Simultaneous transmission in the other direction was possible, with the control data then being replaced by sensor readings from the prosthesis. All data packets were encoded with the COBS/R algorithm and the wireless communication was handled by Digi Xbee 3 radio modules using the IEEE 802.15.4 protocol at a frequency of 2.45 GHz. The Fat-IBC communication was evaluated with the help of so-called "phantoms" which emulated the conditions of the human body fat channel. During said testing, packet loss measurements were performed for various combinations of packet sizes and time intervals between packets. The packet loss measurements showed that the typical amount of transmitted data could be handled well by the fat channel test setup. Although the transmission system was found to be well-functioning in its current state, increasing the packet size to achieve a higher granularity of the movement was perceived to be viable considering the findings from the packet loss measurements.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-420051 |
Date | January 2020 |
Creators | Engstrand, Johan |
Publisher | Uppsala universitet, Fasta tillståndets elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 20045 |
Page generated in 0.0026 seconds