Cette thèse se situe à la frontière des domaines de la reconnaissance de signaux émotionnels et de l'analyse de l'interaction sociale. Dans un premier temps, nous avons étudié une émotion non prototypique, appelée motherese, qui joue un rôle important dans l'interaction parent-enfant. Afin d'étudier cette émotion, nous avons développé un système de détection automatique des émotions basé d'abord sur l'apprentissage supervisé. Ensuite pour pallier au manque de données étiquetées, nous avons développé une approche semi-supervisée permettant une meilleure qualité de classification avec un coût inférieur. Cette approche permet de combiner des exemples étiquetés et non étiquetés pour l'apprentissage. Le système proposé est une extension de l'algorithme de co-apprentissage. Cette approche est dite multi-vue car elle consiste à combiner différentes vues (descripteur+classifieur) afin d'obtenir une prédiction unique par exemple de test. Au-delà de la reconnaissance de signaux émotionnels, il s'agit de structurer et d'interpréter les différents signaux de communication dans un contexte d'interaction face à face. Nous avons proposé un modèle computationnel de l'interaction parent-enfant. Il consiste à modéliser les réponses des enfants par rapport aux stimulations des parents. Nous avons proposé ainsi des analyses quantitative et statistique afin d'étudier l'interdépendance des signaux d'interaction et les comportements humains, en particulier le rôle de motherese pour l'engagement de l'interaction parent-enfant. Enfin, dans le but d'identifier les groupes de comportements les plus pertinents, nous avons développé une technique de regroupement automatique de signaux qui permet d'extraire les différents patterns interactifs. Cette extraction de comportements interactifs permet de discriminer différents groupes: enfants avec développement typique, autistique et avec retard mental.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00587051 |
Date | 13 December 2010 |
Creators | Mahdhaoui, Ammar |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds