In dieser Dissertation wird ein Modell des visuellen Systems untersucht, basierend auf dem Prinzip des unüberwachten Langsamkeitslernens und des SFA-Algorithmus (Slow Feature Analysis). Dieses Modell wird hier für die invariante Objekterkennung und verwandte Probleme eingesetzt. Das Modell kann dabei sowohl die zu Grunde liegenden diskreten Variablen der Stimuli extrahieren (z.B. die Identität des gezeigten Objektes) als auch kontinuierliche Variablen (z.B. Position und Rotationswinkel). Dabei ist es in der Lage, mit komplizierten Transformationen umzugehen, wie beispielsweise Tiefenrotation. Die Leistungsfähigkeit des Modells wird zunächst mit Hilfe von überwachten Methoden zur Datenanalyse untersucht. Anschließend wird gezeigt, dass auch die biologisch fundierte Methode des Verstärkenden Lernens (reinforcement learning) die Ausgabedaten unseres Modells erfolgreich verwenden kann. Dies erlaubt die Anwendung des Verstärkenden Lernens auf hochdimensionale visuelle Stimuli. Im zweiten Teil der Arbeit wird versucht, das hierarchische Modell mit Top-down Prozessen zu erweitern, speziell für die Rekonstruktion von visuellen Stimuli. Dabei setzen wir die Methode der Vektorquantisierung ein und verbinden diese mit einem Verfahren zum Gradientenabstieg. Die wesentlichen Komponenten der für unsere Simulationen entwickelten Software wurden in eine quelloffene Programmbibliothek integriert, in das ``Modular toolkit for Data Processing'''' (MDP). Diese Programmkomponenten werden im letzten Teil der Dissertation vorgestellt. / This thesis examines a model of the visual system, which is based on the principle of unsupervised slowness learning and using Slow Feature Analysis (SFA). We apply this model to the task of invariant object recognition and several related problems. The model not only learns to extract the underlying discrete variables of the stimuli (e.g., identity of the shown object) but also to extract continuous variables (e.g., position and rotational angles). It is shown to be capable of dealing with complex transformations like in-depth rotation. The performance of the model is first measured with the help of supervised post-processing methods. We then show that biologically motivated methods like reinforcement learning are also capable of processing the high-level output from the model. This enables reinforcement learning to deal with high-dimensional visual stimuli. In the second part of this thesis we try to extend the model with top-down processes, centered around the task of reconstructing visual stimuli. We utilize the method of vector quantization and combine it with gradient descent. The key components of our simulation software have been integrated into an open-source software library, the Modular toolkit for Data Processing (MDP). These components are presented in the last part of the thesis.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17178 |
Date | 24 May 2012 |
Creators | Wilbert, Niko |
Contributors | Kempter, Richard, Wiskott, Laurenz, Wichmann, Felix |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0019 seconds