Das Konzept von aktiven Brownschen Teilchen kann benutzt werden, um das Verhalten einfacher biologischer Organismen oder
künstlicher Objekte, welche die Möglichkeit besitzen sich von selbst fortzubewegen zu beschreiben.
Als Bewegungsgleichungen für aktive Brownsche Teilchen kommen Langevin Gleichungen zum Einsatz.
In dieser Arbeit werden aktive Teilchen mit konstanter Geschwindigkeit diskutiert. Im ersten Teil der Arbeit wirkt auf die Bewegungsrichtung
des Teilchen weißes alpha-stabiles Rauschen. Es werden die mittlere quadratische Verschiebung und der effektive Diffusionskoeffizient bestimmt.
Eine überdampfte Beschreibung, gültig für Zeiten groß gegenüber der Relaxationszeit wird hergleitet. Als experimentell zugängliche Meßgröße,
welche als Unterscheidungsmerkmal für die unterschiedlichen Rauscharten herangezogen werden kann, wird die Kurtose berechnet. Neben weißem Rauschen
wird noch der Fall eines Ornstein-Uhlenbeck Prozesses angetrieben von Cauchy verteiltem Rauschen diskutiert. Während eine normale Diffusion
mit zu weißem Rauschen identischem Diffusionskoeffizienten bestimmt wird, kann die beobachtete Verteilung der Verschiebungen Nicht-Gaußförmig
sein. Die Zeit für den Übergang zur Gaußverteilung kann deutlich größer als die Zeitskale Relaxationszeit und die Zeitskale des Ornstein-Uhlenbeck
Prozesses sein. Eine Grenze der benötigten Zeit wird durch eine Näherung der Kurtosis ermittelt.
Weiterhin werden die Grundlagen eines stochastischen Modells für lokale Suche gelegt. Lokale Suche ist die Suche in der näheren Umgebung
eines bestimmten Punktes, welcher Haus genannt wird. Abermals diskutieren wir ein aktives Teilchen mit unveränderlichem Absolutbetrag der
Geschwindigkeit und weißen alpha-stabilem Rauschen in der Bewegungsrichtungsdynamik. Die deterministische Bewegung des Teilchens wird
analysiert bevor die Situation mit Rauschen betrachtet wird. Die stationäre Aufenthaltswahrscheinlichkeitsdichtefunktion wird bestimmt. Es wird
eine optimale Rauschstärke für die lokale Suche, das heißt für das Auffinden eines neuen Ortes in kleinstmöglicher Zeit festgestellt. Die
kleinstmögliche Zeit wird kaum von der Rauschart abhängen. Wir werden jedoch feststellen, dass die Rauschart deutlichen Einfluß auf die
Rückkehrwahrscheinlichkeit zum Haus hat, wenn die Richtung des zu Hauses fehlerbehaftet ist. Weiterhin wird das Model durch eine
an das Haus abstandsabhängige Kopplung
erweitert werden. Zum Abschluß betrachten wir eine Gruppe von Suchern. / Active Brownian particles described by Langevin equations are used to model the behavior of simple biological organisms or
artificial objects that are able to perform self propulsion. In this thesis we discuss active particles with constant speed.
In the first part, we consider angular driving by white Levy-stable noise and
we discuss the mean squared displacement and diffusion coefficients. We derive an overdamped description for those particles
that is valid at time scales larger the relaxation time. In order to provide an experimentally accessible property that distinguishes
between the considered noise types, we derive an analytical expression for the kurtosis. Afterwards, we consider an Ornstein-Uhlenbeck process
driven by Cauchy noise in the angular dynamics of the particle. While, we find normal diffusion with the diffusion coefficient identical
to the white noise case we observe a Non-Gaussian displacement at time scales that can be considerable larger than the relaxation time and
the time scale provided by the Ornstein-Uhlenbeck process. In order to provide a limit for the time needed for the
transition to a Gaussian displacement, we approximate the kurtosis.
Afterwards, we lay the foundation for a stochastic model for local search. Local search is concerned with the neighborhood of a given spot
called home.
We consider an active particle with constant speed and alpha-stable noise in the dynamics of the direction of motion.
The deterministic motion will be discussed before considering the noise to be present. An analytical result for the
steady state spatial density will be given. We will find an optimal noise strength for the local search
and only a weak dependence on the considered noise types.
Several extensions to the introduced model will then be considered. One extension includes a distance dependent
coupling towards the home and thus the model becomes more general. Another extension concerned with an erroneous
understanding by the particle of the direction of the home leads to the result that the return probability to the home depends
on the noise type. Finally we consider a group of searchers.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20464 |
Date | 17 January 2019 |
Creators | Nötel, Jörg |
Contributors | Schimansky-Geier, L., Engel, H., Macau, E.E.N. |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY-NC-SA 3.0 DE) Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 3.0 Deutschland, http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0026 seconds