Return to search

Design and characterization of an optical tweezers system with adaptive optic control

The thesis details the design and characterization of an innovative optical tweezer system. Optical tweezers provide a relatively new technique for non-contact manipulation of micron-scale particles. They employ a laser beam to hold such particles at the laser’s focus. Optical tweezers are used for many scientific purposes, such as: measuring the mechanical properties of bio-molecules, cell and molecule sorting, stiction-less micro-manipulators, and fundamental research in physics. Typically, trap location has been controlled using steer-mirrors or spatial light modulators, operating without beam quality feedback. Here, an innovative trap control system has been developed, featuring a closed-loop adaptive optics system. The prototype system employs a deformable mirror and wavefront sensor to control trap position in three dimensions, while simultaneously removing beam aberrations. The performance of this system is investigated in terms of controllable range of trap motion, trap stiffness, and trap position stability.

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/2022
Date23 December 2009
CreatorsBowman, Shaun
ContributorsBradley, Colin
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0013 seconds