Wir betrachten die stochastische Differentialgleichung mit Gedächtnis (SDDE) mit Gedächtnislänge r dX(t) = b(X(u);u in [t-r,t])dt + sigma(X(u);u in [t-r,t])dB(t) mit eindeutiger schwacher Lösung. Dabei ist B eine Brownsche Bewegung, b and sigma sind stetige, lokal beschränkte Funktionen mit Definitionsbereich C[-r,0], und X(u);u in [t-r,t] bezeichnet das Segment der Werte von X(u) für Zeitpunkte u im Intervall [t,t-r]. Unser Ziel ist eine Folge von diskreten Zeitreihen Xh höherer Ordung zu konstruieren, so dass mit h gegen 0 die Zeitreihen Xh schwach gegen die Lösung X der stochastischen Differentialgleichung mit Gedächtnis konvergieren. Desweiteren werden wir Bedingungen angeben, unter denen eine gegeben Folge von Zeitreihen Xh höherer Ordung schwach gegen die Lösung X einer stochastischen Differentialgleichung mit Gedächtnis konvergiert. Als ein Beispiel werden wir den schwachen Grenzwert einer Folge von diskreten GARCH-Prozessen höherer Ordnung ermitteln. Dieser Grenzwert wird sich als schwache Lösung einer stochastischen Differentialgleichung mit Gedächtnis herausstellen. / Consider the stochastic delay differential equation (SDDE) with length of memory r dX(t) = b(X(u);u in [t-r,t])dt + sigma(X(u);u in [t-r,t])dB(t), which has a unique weak solution. Here B is a Brownian motion, b and sigma are continuous, locally bounded functions defined on the space C[-r,0], and X(u);u in [t-r,t] denotes the segment of the values of X(u) for time points u in the interval [t,t-r]. Our aim is to construct a sequence of discrete time series Xh of higher order, such that Xh converges weakly to the solution X of the stochastic differential delay equation as h tends to zero. On the other hand we shall establish under which conditions time series Xh of higher order converge weakly to a weak solution X of a stochastic differential delay equation. As an illustration we shall derive a weak limit of a sequence of GARCH processes of higher order. This limit tends out to be the weak solution of a stochastic differential delay equation.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16140 |
Date | 29 May 2006 |
Creators | Lorenz, Robert |
Contributors | Buckwar, Evelyn, Dietz, Hans-Michael, Küchler, Uwe |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0022 seconds