Self-assembled rolled-up devices: towards on-chip sensor technologies

By implementing the rolled-up microfabrication method based on strain engineering, several systems are investigated within the contents of this thesis. The structural morphing of planar geometries into three-dimensional structures opens up many doors for the creation of unique material configurations and devices. An exploration into several novel microsystems, encompassing various scientific subjects, is made and methods for on-chip integration of these devices are presented.
The roll-up of a metal and oxide allows for a cylindrical hollow-core structure with a cladding layer composed of a multilayer stack, plasmonic metamaterial. This structure can be used as a platform for a number of optical metamaterial devices. By guiding light radially through this structure, a theoretical investigation into the system makeup of a rolled-up hyperlens, is given. Using the same design, but rather propagating light parallel to the cylinder, a novel device known as a metamaterial optical fiber is defined. This fiber allows light to be guided classically and plasmonically within a single device. These fibers are developed experimentally and are integrated into preexisting on-chip structures and characterized.
A system known as lab-in-a-tube is introduced. The idea of lab-in-a-tube combines various rolled-up components into a single all-encompassing biosensor that can be used to detect and monitor single bio-organisms. The first device specifically tailored to this system is developed, flexible split-wall microtube resonator sensors. A method for the capturing of embryonic mouse cells into on-chip optical resonators is introduced. The sensor can optically detect, via photoluminescence, living cells confined within the resonator through the compression and expansion of a nanogap built within its walls.
The rolled-up fabrication method is not limited to the well-investigated systems based on the roll-up from semiconductor material or from a photoresist layer. A new approach, relying on the delamination of polymers, is presented. This offers never-before-realized microscale structures and configurations. This includes novel magnetic configurations and flexible fluidic sensors which can be designed for on-chip and roving detector applications.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19577
Date29 August 2011
CreatorsSmith, Elliot John
ContributorsSchmidt, Oliver G., Bratschitsch, Rudolf, Technischen Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds