• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 144
  • 102
  • 26
  • 22
  • 20
  • 20
  • 13
  • 12
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • Tagged with
  • 739
  • 113
  • 97
  • 60
  • 57
  • 55
  • 52
  • 50
  • 50
  • 48
  • 46
  • 46
  • 46
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

α-Lipoic Acid Attenuates LPS-Induced Cardiac Dysfunction Through a PI3K/Akt-Dependent Mechanism

Jiang, Surong, Zhu, Weina, Li, Chuanfu, Zhang, Xiaojin, Lu, Ting, Ding, Zhengnian, Cao, Kejiang, Liu, Li 01 May 2013 (has links)
Myocardial dysfunction is an important manifestation of sepsis/septic shock. Activation of Phosphatidylinositol 3-kinase(PI3K)/protein kinase B (Akt) signaling pathway has been shown to improve cardiac performance during sepsis/septic shock. We have reported previously that α-lipoic acid (LA) activates PI3K/Akt pathway in neuronal cells. It is possible, therefore, that treatment with LA will attenuate cardiac dysfunction during sepsis/septic shock through a PI3K/Akt-dependent mechanism. To test this possibility, we treated mice with LA prior to lipopolysaccharide (LPS) challenge. Cardiac function was analyzed by echocardiography 6 h after LPS challenge. LPS significantly suppressed cardiac function as evidenced by decreases in EF% and FS% in mice. However, LA pretreatment significantly attenuated cardiac dysfunction following LPS challenge. LA pretreatment also improved survival in LPS-challenged mice. Furthermore, LA markedly attenuated the LPS-induced inflammatory response in myocardium, as evidenced by decreases in the upregulation of VCAM-1, ICAM-1 and iNOS, as well as myocardial leucocytes infiltration. Moreover, LPS challenge significantly decreased the phosphorylation levels of Akt and Gsk-3β, which was prevented by LA pretreatment. More importantly, inhibition of PI3K/Akt signaling by Wortmannin (WM) completely abrogated the LA-induced protection in cardiac dysfunction following LPS challenge. Collectively, our results demonstrated that LA improved cardiac function during endotoxemia. The mechanism was through, at least in part, preserved activation of the PI3K/Akt signaling.
322

α-Lipoic Acid Attenuates LPS-Induced Cardiac Dysfunction Through a PI3K/Akt-Dependent Mechanism

Jiang, Surong, Zhu, Weina, Li, Chuanfu, Zhang, Xiaojin, Lu, Ting, Ding, Zhengnian, Cao, Kejiang, Liu, Li 01 May 2013 (has links)
Myocardial dysfunction is an important manifestation of sepsis/septic shock. Activation of Phosphatidylinositol 3-kinase(PI3K)/protein kinase B (Akt) signaling pathway has been shown to improve cardiac performance during sepsis/septic shock. We have reported previously that α-lipoic acid (LA) activates PI3K/Akt pathway in neuronal cells. It is possible, therefore, that treatment with LA will attenuate cardiac dysfunction during sepsis/septic shock through a PI3K/Akt-dependent mechanism. To test this possibility, we treated mice with LA prior to lipopolysaccharide (LPS) challenge. Cardiac function was analyzed by echocardiography 6 h after LPS challenge. LPS significantly suppressed cardiac function as evidenced by decreases in EF% and FS% in mice. However, LA pretreatment significantly attenuated cardiac dysfunction following LPS challenge. LA pretreatment also improved survival in LPS-challenged mice. Furthermore, LA markedly attenuated the LPS-induced inflammatory response in myocardium, as evidenced by decreases in the upregulation of VCAM-1, ICAM-1 and iNOS, as well as myocardial leucocytes infiltration. Moreover, LPS challenge significantly decreased the phosphorylation levels of Akt and Gsk-3β, which was prevented by LA pretreatment. More importantly, inhibition of PI3K/Akt signaling by Wortmannin (WM) completely abrogated the LA-induced protection in cardiac dysfunction following LPS challenge. Collectively, our results demonstrated that LA improved cardiac function during endotoxemia. The mechanism was through, at least in part, preserved activation of the PI3K/Akt signaling.
323

α-Lipoic Acid Protected Cardiomyoblasts From the Injury Induced by Sodium Nitroprusside Through ROS-Mediated Akt/Gsk-3β Activation

Jiang, Surong, Zhu, Weina, Wu, Jun, Li, Chuanfu, Zhang, Xiaojin, Li, Yuehua, Cao, Kejiang, Liu, Li 01 December 2014 (has links)
It has been long noted that cardiac cell apoptosis provoked by excessive production of nitric oxide (NO) plays important roles in the pathogenesis of variant cardiac diseases. Attenuation of NO-induced injury would be an alternative therapeutic approach for the development of cardiac disorders. This study investigated the effects of α-lipoic acid (LA) on the injury induced by sodium nitroprusside (SNP), a widely used NO donor, in rat cardiomyoblast H9c2 cells. SNP challenge significantly decreased cell viability and increased apoptosis, as evidenced by morphological abnormalities, nuclear condensation and decline of mitochondrial potential (δ. Ψm). These changes induced by SNP were significantly attenuated by LA pretreatment. Furthermore, LA pretreatment prevented the SNP-triggered suppression of Akt and Gsk-3β activation. Blockade of Akt activation with triciribin (API) completely abolished the cytoprotection of LA against SNP challenge. In addition, LA moderately increased intracellular ROS production. Interestingly, inhibition of ROS with N-acetylcysteine abrogated Akt/Gsk-3β activation and the LA-induced cytoprotection following SNP stimulation. Taken together, the results indicate that LA protected the SNP-induced injury in cardiac H9c2 cells through, at least in part, the activation of Akt/Gsk-3β signaling in a ROS-dependent mechanism.
324

Role of A20 in Interferon-α-Mediated Functional Restoration of Myeloid Dendritic Cells in Patients With Chronic Hepatitis C

Ma, Li, Zhou, Yun, Zhang, Ying, Li, Yuan, Guo, Yonghong, He, Yu, Wang, Jiuping, Lian, Jianqi, Hao, Chunqiu, Moorman, Jonathan P., Yao, Zhi Q., Zhou, Yongxing, Jia, Zhansheng 01 January 2014 (has links)
Hepatitis C virus (HCV) infection is a global health problem characterized by a high rate of chronic infection, which may in part be due to a defect in myeloid dendritic cells (mDCs). This defect appears to be remedied by treatment with interferon-α (IFN-α) -based antiviral therapies; however, the molecular mechanisms underlying mDC dysfunction in HCV infection and restoration by IFN-α treatment are unclear. The ubiquitin-editing protein A20 plays a crucial role in controlling the maturation, cytokine production and immunostimulatory function of mDCs. We propose that the expression of A20 correlates with the function of mDCs during HCV infection and IFN-α therapy. In this study, we observed that A20 expression in mDCs isolated from chronically HCV-infected subjects was significantly higher than healthy subjects or subjects achieving sustained virological responses (SVR) following antiviral treatment. Notably, A20 expression in mDCs from HCV patients during IFN-α treatment was significantly lower than for untreated patients, SVR patients, or healthy subjects. Besides, A20 expression in mDCs stimulated by polyI:C differed between HCV patients and healthy subjects, and this difference could be abrogated by the treatment with IFN-α in vitro. Additionally, A20 expression by polyI:C-activated mDCs, with or without IFN-α treatment, negatively correlated with the expression of HLA-DR, CD86 and CCR7, and the secretion of interleukin-12 (IL-12), but positively associated with the production of IL-10. Importantly, silencing A20 expression using small interfering RNAs increased the production of IL-12 in mDCs of chronically HCV-infected individuals. These findings suggest that A20 plays a crucial role in negative regulation of innate immune responses during chronic viral infection.
325

α-Lipoic Acid Increases Tolerance of Cardiomyoblasts to Glucose/Glucose Oxidase-Induced Injury via ROS-Dependent ERK1/2 Activation

Yao, Yuzhen, Li, Rongrong, Ma, Yujie, Wang, Xiaohui, Li, Chuanfu, Zhang, Xiaojin, Ma, Rong, Ding, Zhengnian, Liu, Li 01 April 2012 (has links)
α-Lipoic acid (LA) has been shown to improve the diabetic cardiac symptoms. However, the underlying mechanisms have not been elucidated precisely. We have reported recently that LA potentially protected neurons from substance-induced apoptosis. We hypothesized that LA could attenuate cardiac cells death induced by oxidative stress derived from high glucose. To test this possibility, we examined the effects of LA on . d-glucose/glucose oxidase (DG/GO, 30. mM/5. mU)-induced injury in rat cardiomyoblast H9c2 cells. We observed that LA pretreatment significantly increased cell viability in DG/GO-challenged cells. LA pretreatment also attenuated DG/GO-induced apoptosis as evidenced by decreases in both nuclear condensation and loss of mitochondrial potential. In addition, LA activated ERK1/2 and moderately increased ROS production. Blockade of ERK1/2 activation by PD98059 completely abolished LA-induced protection against DG/GO challenge. Inhibition of ROS by . N-acetylcysteine abrogated LA-induced ERK1/2 activation and cytoprotection. Furthermore, we observed that the ROS production induced by LA was significantly slower and milder than that by DG/GO. Our results suggest that pretreatment with LA moderately increased ROS production to induce a preconditioning-like effect by ERK1/2 activation thereby increased tolerance of H9c2 cells to DG/GO challenge.
326

α-Lipoic Acid Prevents Bupivacaine-Induced Neuron Injury in Vitro Through a PI3K/Akt-Dependent Mechanism

Wang, Xiaohui, Zhang, Xiaojin, Cheng, Yunlin, Li, Chuanfu, Zhang, Wenbo, Liu, Li, Ding, Zhengnian 01 January 2010 (has links)
Background: Bupivacaine is an amide type local anesthetic which is widely used for epidural anesthesia and nerve blockade in patients. However, local administration of bupivacaine could cause neuron injury showing transient neurologic symptoms. α-Lipoic acid (LA) was shown to protect nerve cells from substance-induced injury. We hypothesized that LA administration could attenuate bupivacaine-induced neurotoxicity. Methods: To evaluate our hypothesis, we treated mouse neuroblastoma N2a cells with LA 30 min before the cells were exposed to bupivacaine. We evaluated cellular injury by examination of cell viability, morphology changes, nuclear condensation, and Annexin V staining. We also examined the levels of intracellular reactive oxygen species (ROS) and activation of PI3K/Akt signaling pathway. In a separate experiment, we determined the effect of Akt inhibition on cell viability in the presence of LA and bupivacaine. Results: Bupivacaine treatment significantly induced cell injury as evidenced by decreased cell viability, increased nuclear condensation and Annexin V staining. Administration of LA significantly attenuated bupivacaine-induced cell injury. In addition, LA treatment increased the levels of phospho-Akt and phospho-GSK3β and attenuated bupivacaine decreased the levels of ROS. More significantly, pharmacological inhibition of Akt abolished the LA-induced protection from bupivacaine-caused cell injury. Conclusions: Our findings suggest that pretreatment of neuroblastoma cells with LA protected neural cells from bupivacaine-induced injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.
327

Differential Regulation of Cytokine and Chemokine Production in Lipopolysaccharide-Induced Tolerance and Priming

Peck, Octavia M., Williams, David L., Breuel, Kevin F., Kalbfleisch, John H., Fan, Hongkuan, Tempel, George E., Teti, Giuseppe, Cook, James A. 07 June 2004 (has links)
LPS pretreatment of human pro-monocytic THP-1 cells induces tolerance to secondary LPS stimulation with reduced TNFα production. However, secondary stimulation with heat-killed Staphylococcus aureus (HKSa) induces priming as evidenced by augmented TNFα production. The pro-inflammatory cytokine, IFNγ, also abolishes suppression of TNFα in LPS tolerance. The effect of LPS tolerance on HKSa and IFNγ-induced inflammatory mediator production is not well defined. We hypothesized that LPS, HKSa and IFNγ differentially regulate pro-inflammatory mediators and chemokine production in LPS-induced tolerance. THP-1 cells were pretreated for 24h with LPS (100ng/ml) or LPS (100ng/ml)+IFNγ (1μg/ml). Cells were subsequently stimulated with LPS or HKSa (10μg/ml) for 24h. The production of the cytokines TNFα, IL-6, IL-1β, and GMCSF and the chemokine IL-8 were measured in supernatants. LPS and HKSa stimulated TNFα (3070±711pg/ml and 217±9pg/ml, respectively) and IL-6 (237±8.9pg/ml and 56.2±2.9pg/ml, p<0.05, n=3, respectively) in control cells compared to basal levels (<25pg/ml). LPS induced tolerance to secondary LPS stimulation as evidenced by a 90% (p<0.05, n=3) reduction in TNFα. However, LPS pretreatment induced priming to HKSa as demonstrated by increased TNFα (2.7 fold, from 217 to 580pg/ml, p<0.05, n=3). In contrast to suppressed TNFα, IL-6 production was augmented to secondary LPS stimulation (9 fold, from 237 to 2076pg/ml, p<0.01, n=3) and also primed to HKSa stimulation (62 fold, from 56 to 3470pg/ml, p<0.01, n=3). LPS induced IL-8 production and to a lesser extent IL-1β and GMCSF. LPS pretreatment did not affect secondary LPS stimulated IL-8 or IL-1β, although HKSa stimulation augmented both mediators. In addition, IFNγ pretreatment reversed LPS tolerance as evidenced by increased TNFα levels while IL-6, IL-1β, and GMCSF levels were further augmented. However, IL-8 production was not affected by IFNγ. These data support our hypothesis of differential regulation of cytokines and chemokines in gram-negative- and gram-positive-induced inflammatory events. Such changes may have implications in the pathogenesis of polymicrobial sepsis.
328

Therapeutic Uses of Antioxidant Liposomes

Stone, William L., Smith, Milton 01 December 2004 (has links)
This review will focus on the therapeutic uses of antioxidant liposomes. Antioxidant liposomes have a unique ability to deliver both lipid- and water-soluble antioxidants to tissues. This review will detail the varieties of antioxidants which have been incorporated into liposomes, their modes of administration, and the clinical conditions in which antioxidant liposomes could play an important therapeutic role. Antioxidant liposomes should be particularly useful for treating diseases or conditions in which oxidative stress plays a significant pathophysiological role because this technology has been shown to suppress oxidative stress. These diseases and conditions include cancer, trauma, irradiation, retinotherapy or prematurity, respiratory distress syndrome, chemical weapon exposure, and pulmonary infections.
329

TGF-β1 Inhibits Multiple Caspases Induced by TNF-α in Murine Osteoblastic MC3T3-E1 Cells

Chua, Chu C., Chua, Balvin H.L., Chen, Zhongyi, Landy, Cathy, Hamdy, Ronald C. 16 December 2002 (has links)
Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that induces apoptosis in a number of cell systems, including osteoblasts. Transforming growth factor β1 (TGF-β1) is an abundant growth factor that is known to stimulate bone formation. This study was designed to examine the role of TGF-β1 on TNF-α-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 20 ng/ml of TNF-α, 10 ng/ml of TGF-β1, or combination, for 6 h. TNF-α exerted a variety of effects on the apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that TNF-α upregulated the mRNA levels of caspase-1, -7, -11, -12, and FAS. Western blot analysis showed enhanced processing of caspase-1, -7, -11, and -12, with the appearance of their activated enzymes 24 h after TNF-α treatment. In addition, caspase-3-like activity was significantly activated following TNF-α treatment. Levels of cleaved poly(ADP-ribose) polymerase and FAS protein were also elevated by TNF-α. Finally, Hoechst staining, terminal deoxynucleotidyl-transferase nick-end labeling (TUNEL) assay, and oligonucleosome ELISA all indicated that TNF-α induced apoptosis. In contrast, the addition of TGF-β1 attenuated all of the aforementioned effects of TNF-α. Our results demonstrate that TGF-β1 can decrease TNF-α-induced apoptosis in murine osteoblasts at least in part by attenuating TNF-α-induced caspase gene expression.
330

The Influence of Dietary Iron and Tocopherols on Oxidative Stress and Ras-p21 Levels in the Colon

Stone, William L., Papas, Andreas M., LeClair, Irene O., Qui, Min, Ponder, Terry 01 December 2002 (has links)
The purpose of this investigation was to determine how dietary levels of α-tocopherol, γ-tocopherol and iron influence oxidative stress and ras-p21 levels in the colon. Rats were fed diets deficient in tocopherols (-E) or supplemented with either 0.156 mmol of α-tocopherol (AE)/kg diet or 0.156 mmol of γ-tocopherol (GE)/kg of diet. Half the rats in each of these three groups received dietary iron at a level of 35 mg/kg diet and the other half at eight times this level (280 mg/kg diet). Rats fed the AE diets had higher levels of Vitamin E in feces, colonocytes, plasma and liver than did rats fed the GE diets. Dietary iron levels did not influence tocopherol levels in plasma, liver or feces. For colonocytes, high dietary iron decreased tocopherol levels. The ratio of γ-tocopherol (in the GE groups) to α-tocopherol (in the AE groups) was 0.13 for plasma, 0.11 for liver, 0.28 for colonocytes and 0.51 for feces. The plasma ratio is not, therefore, predictive of the ratio in colonocytes and feces. High levels of dietary iron increased levels of fecal lipid hydroperoxides. Moreover, rats fed the GE diets had lower levels of fecal lipid hydroperoxides than rats fed the AE diets. The levels of ras-p21 were significantly lower in rats fed the GE diets compared with rats fed the AE diets. The γ-tocopherol may, therefore, play a significant role in preventing colon cancer. High levels of dietary iron were found to promote oxidative stress in feces and colonocytes.

Page generated in 0.0353 seconds