• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 157
  • 145
  • 53
  • 40
  • 17
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1011
  • 145
  • 100
  • 98
  • 95
  • 91
  • 91
  • 90
  • 76
  • 66
  • 65
  • 65
  • 64
  • 63
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Visuomotor control of step descent: evidence of specialised role of the lower visual field

Timmis, Matthew A., Bennett, S.J., Buckley, John 31 March 2009 (has links)
No / We often complete step downs in the absence of visual feedback of the lower-limbs, and/or of the area on the ground where we intend to land (e.g. when descending a step whilst carrying a laundry basket). Therefore, the present study examined whether information from lower visual field (lvf) provides any advantage to the control of step descent. Ten healthy subjects (age 24.4 ± 9.4 years) completed repeated step downs over three-step heights with visual information available from either full or upper visual fields (lvf occluded), and for specific intervals relative to step initiation. Visuomotor control of step descent was assessed by determining pre-landing kinematic measures and landing mechanic variables for the initial landing period. Findings indicate that whilst there were only limited effects on pre-landing kinematic measures under lvf occlusion, individual’s ability to plan/control landing mechanics was significantly different in such conditions compared to when they had access to full field vision. These changes were consistent with participants being uncertain regarding precise floor height when access to lvf was restricted, and consequently led them to adapt their landing behaviour but without fundamentally altering their stepping strategy. Compared to when vision was available throughout, the occlusion of vision (full or upper visual field) from toe-off or mid-swing onwards caused very few differences in landing behaviour. This suggests that the contribution of information from lvf to the control of landing behaviour occurs predominantly prior to or during movement initiation and that ‘online’ vision is used only in the latter portion of the descent phase to subtly ‘fine tune’ landings.
412

Interférences cognitivo-locomotrices lors d'activités représentatives de la vie quotidienne chez les personnes âgées et les personnes ayant subi un accident vasculaire cérébral

Deblock-Bellamy, Anne 04 February 2022 (has links)
Introduction : La capacité de pouvoir réaliser deux tâches de manière simultanée (double tâche ; DT) est régulièrement sollicitée dans notre quotidien. Elle nous permet, entre autres, de pouvoir marcher de manière indépendante et sécuritaire dans la communauté. Cependant, la réalisation d'une activité en DT peut provoquer une diminution de performance de l'une ou des deux tâches (coût de la DT). La grande majorité des études ayant exploré le phénomène de DT chez les personnes âgées et les personnes ayant subi un accident vasculaire cérébral (AVC) a toutefois utilisé des tâches locomotrices simples et des tâches cognitives peu écologiques (ex. soustractions, Stroop test) permettant difficilement d'extrapoler ces résultats aux activités de la vie quotidienne. Ainsi, l'objectif général de cette thèse est de mieux comprendre les interférences cognitivo-locomotrices (ICL) lors de la réalisation d'activités représentatives de la vie quotidienne chez les personnes âgées et des personnes ayant subi un AVC. Méthodologie : Afin de mieux comprendre le phénomène de DT lors d'activités représentatives de la vie quotidienne, un protocole expérimental en environnement virtuel a été développé. Lors de l'évaluation des ICL, tous les participants ont été immergés dans un environnement virtuel simulant un couloir de centre commercial, à l'aide d'un casque de réalité virtuelle (RV). Les déplacements dans l'environnement virtuel ont été réalisés à l'aide d'une plateforme omnidirectionnelle. En condition de DT, les participants devaient se déplacer dans l'environnement virtuel tout en mémorisant une liste d'achats de 5 items, délivrée au début de la tâche de marche. Deux niveaux de difficulté de tâches locomotrices et cognitives ont été utilisés. La complexification de la tâche locomotrice a été faite grâce à l'ajout d'agents virtuels devant être évités et celle de la tâche cognitive par la modification de 2 items de la liste d'achats au cours de la réalisation de la tâche. Les performances locomotrices et cognitives ont été mesurées en simple tâche (ST) et en DT. Les ICL ont été quantifiées à l'aide des coûts de la DT (% de changement des performances entre la simple et la double tâche). Ce protocole a permis d'évaluer les capacités locomotrices et cognitives en DT auprès de trois populations, c'est-à-dire les jeunes adultes en santé, les adultes en santé âgés de 55 ans et plus, ainsi que les adultes ayant subi un AVC. Résultats : Malgré leur âge et l'absence de limitations fonctionnelles, les jeunes adultes ont présenté des coûts cognitifs lors de la réalisation de la DT la plus complexe. Dans la majorité des conditions de DT, les personnes âgées de 55 ans et plus ont, quant à elles, présenté des coûts locomoteurs et/ou cognitifs. Cette étude a également démontré que les coûts locomoteurs augmentent avec l'âge, ce qui n'a pas été constaté au niveau des coûts cognitifs. Chez ces deux populations en santé, les coûts de la DT ont principalement été influencés par la complexité de la tâche cognitive. Des coûts de la DT ont également été observés chez les personnes ayant subi un AVC, dans toutes les conditions de DT à l'exception de la plus simple. Cependant, les personnes ayant subi un AVC ont présenté des coûts cognitifs dans des conditions de DT durant lesquelles les personnes en santé appariées en âge n'en ont pas présenté et la magnitude des coûts cognitifs a été plus importante chez les personnes ayant subi un AVC durant la condition de DT la plus complexe. Conclusions : La réalisation d'une DT a un effet sur les performances cognitives et/ou locomotrices, et ce, même chez les personnes ne présentant pas de limitations des fonctions locomotrices et cognitives. Des différences de patrons d'interférences ou de magnitude de coûts de la DT ont été observées en fonction de l'âge, la présence d'une lésion cérébrale ou la complexité des tâches réalisées. Ces observations soulignent l'importance d'évaluer aussi bien les performances locomotrices que cognitives lors de l'évaluation des capacités de DT. La RV semble être une modalité d'évaluation prometteuse permettant de quantifier les capacités de la DT lors de tâches représentatives de la vie quotidienne. / Background: The ability to perform two tasks simultaneously (i.e dual task, DT) is regularly used in our daily lives. It enables, among other things, to walk independently and safely in the community. However, walking while performing another task may deteriorate one or both tasks' performances (DT cost). Most studies exploring the DT phenomenon in older adults and stroke survivors have used simple locomotor tasks and cognitive tasks with questionable ecological validity (e.g., subtractions, Stroop test) that make it difficult to extrapolate these results to activities of everyday life, however. Thus, the general objective of this thesis is to better understand cognitive-locomotor interferences during activities representative of daily living in elderly people and persons who have sustained a stroke. Methodology: A virtual reality-based protocol was developed to assess DT abilities during activities representative of everyday life. All participants were immersed in a virtual mall corridor using a virtual reality (VR) headset. Walking movements in the virtual environment were performed using an omnidirectional platform. In the DT conditions, participants had to move forward in the virtual environment while memorizing a 5-item shopping list, delivered at the beginning of the walking task. Two levels of difficulty were proposed in both locomotor and cognitive tasks. The locomotor task was complexified by adding a virtual agent to avoid and the cognitive task was complexified by modifying 2 items of the shopping list during the task. Locomotor and cognitive performances were measured in single task (ST) and DT. Cognitive-locomotor interferences were quantified using DT costs (% change in performance between single and dual tasks; DTC). This DT assessment protocol was used in 3 populations, i.e healthy young adults, healthy adults aged 55 years and older, and adults with stroke. Results: Despite their age and the absence of functional limitations, young adults showed cognitive DTC when performing the most complex condition. In most DT conditions, individuals aged 55 years and older, on the other hand, exhibited locomotor and/or cognitive DTC. This study also showed that locomotor DTC increased with age, which was not the case for cognitive DTC. In both healthy populations, DTC were primarily influenced by the complexity of the cognitive task. DTC were also observed in stroke survivors in all but the simplest DT conditions. Individuals with a stroke exhibited cognitive DTC in certain DT conditions in which age-matched healthy individuals did not. Moreover, the magnitude of cognitive costs was greater in stroke survivors than in healthy individuals when the most complex DT condition was executed. Conclusions: Activities in DT impact cognitive and/or locomotor performance, even in individuals who do not present any limitations in locomotor or cognitive functions. Differences in interference pattern or in DTC magnitude were observed as a function of age, presence of a brain lesion and complexity of the tasks performed. These observations highlight the importance of assessing both locomotor and cognitive performances when characterizing DT abilities. VR seems to be a promising assessment approach to quantify DT abilities during activities representative of daily life.
413

Rôle de DSCAM dans le développement du circuit locomoteur spinal

Thiry, Louise 24 April 2018 (has links)
La locomotion est contrôlée par des circuits spinaux qui génèrent le rythme locomoteur et coordonnent les activités musculaires entre la droite et la gauche du corps, et entre les muscles fléchisseurs et extenseurs. De plus, le rétrocontrôle sensoriel acheminé par les afférences proprioceptives et cutanées est crucial pour le fonctionnement normal du circuit locomoteur et pour l’adaptation du mouvement à l’environnement extérieur pendant la marche. La protéine DSCAM (Down Syndrom Cell Adhesion Molecule) est une molécule d’adhérence cellulaire impliquée dans un grand nombre de mécanismes nécessaires à la mise en place des réseaux neuronaux au cours du développement. Bien que DSCAM soit exprimée dans la moelle épinière de façon transitoire pendant le développement embryonnaire de la souris, et que sa mutation entraîne des défauts posturaux et moteurs très marqués, il y a très peu d’information sur son rôle dans le développement du circuit spinal lombaire contrôlant la locomotion. Dans ce contexte, les travaux présentés dans cet ouvrage visent à étudier l’implication de DSCAM dans la mise en place et le maintien du circuit locomoteur spinal. Pour cela, nous avons d’abord évalué les changements neurologiques du circuit spinal lombaire de souris néonatales et adultes mutantes pour DSCAM. Les souris portant la mutation systémique DSCAM2J présentent des problèmes de coordination locomotrice associés à des changements anatomiques et neurophysiologiques dans le circuit interneuronal spinal. Par ailleurs, nous avons étudié l’impact de la mutation DSCAM2J sur la coordination des membres pendant la locomotion de la souris adulte. Nous montrons que la mutation de DSCAM altère la capacité des souris à courir et induit des changements dans leur répertoire locomoteur. En particulier, les souris mutantes DSCAM2J présentent des patrons de marche auparavant jamais décrits pour la souris. De tels changements suggèrent une réorganisation des réseaux neuronaux spinaux et supraspinaux impliqués dans le contrôle locomoteur des souris mutantes DSCAM2J. À l’aide de la technologie Cre-Lox, nous avons alors identifié et caractérisé la contribution de différentes populations interneuronales du circuit locomoteur spinal affectées par la mutation de DSCAM. Nous montrons dans cette étude que la mutation conditionnelle de DSCAM dans les interneurones spinaux excitateurs ou inhibiteurs entraîne un déséquilibre entre excitation et inhibition, induisant des défauts de coordination gauche/droite ou fléchisseur/extenseur, respectivement. Par immunomarquage, nous avons alors génétiquement identifié les populations interneuronales spinales impliquées dans le contrôle de la coordination gauche/droite ou fléchisseur/extenseur nécessaires à la locomotion. L’ensemble des résultats de nos études fonctionnelles, électrophysiologiques et anatomiques suggère que la protéine DSCAM est nécessaire au développement du circuit locomoteur spinal des mammifères. En plus de caractériser les différents rôles de DSCAM dans la mise en place de ce réseau spinal, ce travail montre comment le développement de mutations conditionnelles de DSCAM dans différentes sous-populations neuronales permet d’étudier différentes composantes du circuit locomoteur spinal. / Locomotion is controlled by spinal circuits that generate rhythm and coordinate left-right and flexor-extensor motoneuronal activities. The outputs of motoneurons and spinal interneuronal circuits are shaped by sensory feedback, relaying peripheral signals that are critical to the locomotor and postural control. Several studies in invertebrates and vertebrates have argued that the Down Syndrome Cell Adhesion Molecule (DSCAM) would play an important role in the normal development of neural circuits. Although there is evidence that DSCAM is expressed in the developing mouse spinal cord, and that its mutation induces postural and motor defects in adult mice, little is known about its functional contribution to the spinal circuits underlying locomotion. In this context, the work presented in this thesis aims at studying the implication of DSCAM in the establishment of the spinal locomotor circuit. For this purpose, we first sought to evaluate the neurological changes in the spinal locomotor circuit of neonatal and adult DSCAM mutant mice. We show that a systemic mutation of DSCAM (DSCAM2J) induces locomotor coordination defects associated with anatomical and neurophysiological changes in spinal interneuronal and sensorimotor circuits. We then investigated the functional contribution of DSCAM to locomotor gaits over a wide range of locomotor speeds using freely walking mice. We show that the DSCAM2J mutation impairs the ability of mice to run and modifies their locomotor repertoire, inducing the emergence of aberrant gaits for mice. Such changes suggest a reorganization of spinal and supraspinal neuronal circuits underlying locomotor control in DSCAM2J mutant mice. Finally, we used the Cre-Lox technology to genetically identify and characterize the neuronal populations underlying these functional changes. We show in this study that conditional mutations of DSCAM in either excitatory or inhibitory spinal interneurons induce an imbalance in excitatory-inhibitory signaling across the spinal midline that can impair the spinal locomotor circuit controlling either the bilateral coordination or the flexor/extensor coordination, respectively. Combining these studies with immunostaining experiments, we identified spinal interneuronal subpopulations implicated in either the bilateral or the flexor/extensor coordination during locomotion. Collectively, our functional, electrophysiological, and anatomical studies suggest that the mammalian DSCAM protein is involved in the normal development of the spinal locomotor circuit. In addition to characterizing the different implications of DSCAM in the development of this spinal circuit, this work shows how the use of conditional mutations of DSCAM in different neuronal subpopulations allows the study of the spinal locomotor circuit components.
414

Organisation du circuit locomoteur du mésencéphale et réorganisation après lésion de la moëlle épinière

Lafrance-Zoubga, David 21 December 2018 (has links)
Les lésions médullaires entraînent un déficit fonctionnel moteur d’importance variable selon leur localisation et leur sévérité. En cas de lésion partielle, il est possible d’observer chez des modèles animaux et des patients un certain degré de récupération fonctionnelle après une période allant de quelques semaines à plusieurs années selon les cas. Cette récupération impliquerait une réorganisation anatomique du circuit locomoteur spinal ainsi que des centres supraspinaux. Parmi ces derniers se trouve la région locomotrice mésencéphalique (MLR) qui est une région fonctionnelle capable d’initier et de moduler la locomotion. Un débat entoure cependant la nature de ses corrélats anatomiques qui pourraient être le noyau cunéiforme (CnF) qui est essentiellement composé de neurones glutamatergiques, le noyau pédonculopontin (PPN) formé de neurones cholinergiques et glutamatergiques, le noyau mésencéphalique profond (MRN/DpMe) qui est glutamatergique et le tegmentum latérodorsal (LDT) formé de populations neuronales semblables au PPN. Des études suggèrent une augmentation des projections de la MLR vers le tronc cérébral après lésion et que les neurones glutamatergiques du CnF sont responsables de l’initiation et de l’accélération de la locomotion. En combinant le traçage rétrograde, la stéréologie et la cinématique, nous mettons en évidence, dans le CnF mais aussi dans le PPN et le LDT contralatésionnels, une augmentation des projections glutamatergiques de la MLR vers la formation réticulée. Étant donné le rôle majeur des neurones glutamatergiques dans la locomotion, leur recrutement pourrait contribuer à la récupération fonctionnelle spontannée observée après lésion médullaire partielle. Une expérience de traçage antérograde nous permettra de confirmer que ces projections glutamatergiques supplémentaires forment bien de nouvelles synapses dans la formation réticulée voire dans la moelle épinière. Ce projet pourrait contribuer à préciser les sites optimaux de stimulation cérébrale profonde de la MLR pour traiter les déficits moteurs causés par les lésions médullaires partielles voire par d’autres pathologies comme la maladie de Parkinson. / Spinal cord injuries cause a functional motor deficit of varying importance depending on their location and their severity. After incomplete spinal cord injury, it is possible to notice in animal models and patients a certain functional recovery occurring on a period going from a few weeks to several years. This recovery may occur thanks to an anatomical reorganization of the spinal locomotor circuit and supraspinal locomotor centers. Among these centers is the mesencephalic locomotor region (MLR) which is a functional region able to initiate and modulate locomotion. Its exact anatomical correlates are still a matter of debate but they could include the cuneiform nucleus (CnF), a cluster of glutamatergic neurons, the pedunculopontine nucleus (PPN) that is cholinergic and glutamatergic, the deep mesencephalic nucleus (MRN/DpMe) that is glutamatergic and the laterodorsal tegmentum which is formed by neuronal populations similar to the PPN. Some studies suggest that there is an increase of projections from the MLR to the brainstem after lesion and that the glutamatergic neurons of the CnF can initiate and accelerate locomotion. Using retrograde tracing, stereological analysis and kinematic, we show, in the CnF but also in the contralesional PPN and LDT, that there is a recruitment of MLR glutamatergic projections to the medullar reticular formation. Considering the major role of glutamatergic neurones in locomotion, this recruitment could contribute to motor functional recovery after incomplete spinal cord injury. An anterograde tracing experiment could then help us to confirm that these “new” projections form synaptic connections in the medullar reticular formation and, maybe, in the spinal cord. This project could contribute to specify the optimal deep brain stimulation sites in the MLR to treat motor deficits caused by incomplete spinal cord injuries and maybe also by other pathologies such as Parkinson’s disease. / Résumé en espagnol
415

The Dynamics of Non-Equilibrium Gliding in Flying Snakes

Yeaton, Isaac J. 13 March 2018 (has links)
This dissertation addresses the question, how and why do 'flying' snakes (Chrysopelea) undulate through the air? Instead of deploying paired wings or wing-like surfaces, flying snakes jump, splay their ribs into a bluff-body airfoil, and undulate through the air. Aerial undulation is the dominant feature of snake flight, but its effects on locomotor performance and stability are unknown. Chapter 2 describes a new non-equilibrium framework to analyze gliding animals and how the pitch angle affects their translational motion. Chapter 3 combines flying snake glide experiments and detailed dynamic modeling to address what is aerial undulation and how each kinematic component affects rotational stability and translational performance. Chapter 4 combines the kinematic data of Chapter 3, with elements of the non-equilibrium framework of Chapter 2, to examine the kinematics of snake flight in greater detail. This chapter also tests if our current understanding of flying snake aerodynamics is sufficient to explain the observed center of mass motion. / Ph. D.
416

Real-Time Planning and Nonlinear Control for Robust Quadrupedal Locomotion with Tails

Fawcett, Randall Tyler 16 July 2021 (has links)
This thesis aims to address the real-time planning and nonlinear control of quadrupedal locomotion such that the resulting gaits are robust to various kinds of disturbances. Specifically, this work addresses two scenarios. Namely, a quasi-static formulation in which an inertial appendage (i.e., a tail) is used to assist the quadruped in negating external push disturbances, and an agile formulation which is derived in a manner such that an appendage could easily be added in future work to examine the affect of tails on agile and high-speed motions. Initially, this work presents a unified method in which bio-inspired articulated serpentine robotic tails may be integrated with walking robots, specifically quadrupeds, in order to produce stable and highly robust locomotion. The design and analysis of a holonomically constrained 2 degree of freedom (DOF) tail is shown and its accompanying nonlinear dynamic model is presented. The model created is used to develop a hierarchical control scheme which consists of a high-level path planner and a full-order nonlinear low-level controller. The high-level controller is based on model predictive control (MPC) and acts on a linear inverted pendulum (LIP) model which has been extended to include the forces produced by the tail by augmenting the LIP model with linearized tail dynamics. The MPC is used to generate center of mass (COM) and tail trajectories and is subject to the net ground reaction forces of the system, tail shape, and torque saturation of the tail in order to ensure overall feasibility of locomotion. At the lower level, a full-order nonlinear controller is implemented to track the generated trajectories using quadratic program (QP) based input-output (I-O) feedback linearization which acts on virtual constraints. The analytical results of the proposed approach are verified numerically through simulations using a full-order nonlinear model for the quadrupedal robot, Vision60, augmented with a tail, totaling at 20 DOF. The simulations include a variety of disturbances to show the robustness of the presented hierarchical control scheme. The aforementioned control scheme is then extended in the latter portion of this thesis to achieve more dynamic, agile, and robust locomotion. In particular, we examine the use of a single rigid body model as the template model for the real-time high-level MPC, which is linearized using variational based linearization (VBL) and is solved at 200 Hz as opposed to an event-based manner. The previously defined virtual constraints controller is also extended so as to include a control Lyapunov function (CLF) which contributes to both numerical stability of the QP and aids in stability of the output dynamics. This new hierarchical scheme is validated on the A1 robot, with a total of 18 DOF, through extensive simulations to display agility and robustness to ground height variations and external disturbances. The low-level controller is then further validated through a series of experiments displaying the ability for this algorithm to be readily transferred to hardware platforms. / Master of Science / This thesis aims to address the real-time planning and nonlinear control of four legged walking robots such that the resulting gaits are robust to various kinds of disturbances. Initially, this work presents a method in which a robotic tail can be integrated with legged robots to produce very stable walking patterns. A model is subsequently created to develop a multi-layer control scheme which consists of a high-level path planner, based on a reduced-order model and model predictive control techniques, that determines the trajectory for the quadruped and tail, followed by a low-level controller that considers the full-order dynamics of the robot and tail for robust tracking of the planned trajectory. The reduced-order model considered here enforces quasi-static motions which are slow but generally stable. This formulation is validated numerically through extensive full-order simulations of the Vision60 robot. This work then proceeds to develop an agile formulation using a similar multi-layer structure, but uses a reduced-order model which is more amenable to dynamic walking patterns. The low-level controller is also augmented slightly to provide additional robustness and theoretical guarantees. The latter control algorithm is extensively numerically validated in simulation using the A1 robot to show the large increase in robustness compared to the quasi-static formulation. Finally, this work presents experimental validation of the low-level controller formulated in the latter half of this work.
417

Rules of Contact Inhibition of Locomotion for Cell-pairs Migrating on Aligned and Suspended Nanofibers

Singh, Jugroop Kaur 22 November 2019 (has links)
Contact inhibition of locomotion (CIL), a migratory mechanism, first introduced by Abercrombie and Heaysman in 1953 is now a fundamental driving force in developmental, repair and disease biology. Much of what we know of CIL stems from studies done on 2D substrates which are unable to provide the essential biophysical cue of fibrous extracellular matrix curvature. Here we inquired if the same rules are applicable for cells attached to and migrating persistently on suspended and aligned ECM-mimicking nanofibers. Using two elongated cell shapes (spindle attached to one fiber, and parallel attached to two fibers), we quantitate CIL rules for spindle-spindle, parallel-parallel and spindle-parallel collisions. Two approaching spindles do not repolarize upon contact but rather continue to migrate past one another. Contrastingly, approaching parallel cells establish distinct CIL, with only one cell repolarizing upon contact followed by migration of both cells as a cohesive unit in the repolarization direction. Interestingly, for the case of spindle and parallel cell collision, we find the parallel cell to shift the morphology to that of spindle and continue persistent movement without repolarization. To account for effect of cell speed, we also quantitate CIL collisions between daughter and non-dividing cells. While spindle-spindle collisions result in cells still walking by, for parallel-parallel collisions, we capture rare events of a daughter cell pushing the non-dividing cell. With increasing population numbers, we observe formation of cell streams that collapse into spheroids. Single cells are able to invade along fibers from the spheroids and are then subject to same CIL conditions, thus providing a platform with cyclic CIL. The presented coupling of experimental and analytical framework provides new insights in contextually relevant CIL and predictive capabilities in cell migration decision steps. / Master of Science / Contact inhibition of locomotion (CIL) is a migratory process that can lead to a change in migration direction through protrusion inhibition of single cells. First described in 1953, the traditional model of CIL shows that on a 2D substrate, two migrating cells experience a decrease in protrusive behavior upon contacting each other, followed by repolarization, and migration away from one another. However, a cell's extracellular matrix (ECM) is fibrous in nature, and how cells maintain standard CIL rules in fibrous environments remains unclear. Here, using suspended, aligned nanofibers created using a non-electrospinning Spinneret based Tunable Engineered Parameters (STEP) method, we investigate CIL decision steps of two fibroblast cells approaching each other in two shapes: spindle cells attached to single fibers, and parallel cells attached to two fibers. Most spindle cells approaching each other do not switch direction upon contact, but rather continue to migrate past each other, termed a walk past. Contrastingly, approaching parallel cells display unique CIL whereby only one cell repolarizes and reverses its migration direction. Subsequently, both cells remain in contact while migrating in the repolarization direction. Interestingly, we report that both spindle and parallel CIL are also affected by speed post cell division. Altogether, for the first time, we introduce a platform to understand cell shape driven CIL geometrical rules in ECM mimicking environments.
418

The Effect of Interaction Fidelity on User Experience in Virtual Reality Locomotion

Warren, Lawrence Elliot 25 May 2018 (has links)
In virtual worlds, designers often consider "real walking" to be the gold standard when it comes to locomotion, as shown by attempts to incorporate walking techniques within tasks. When real walking is not conceivable due to several different limitations of virtual interactions (space, hardware, tracking, etc.) a walking simulation technique is sometimes used. We call these moderate interaction fidelity techniques and based upon literature, we can speculate that they will often provide an inferior experience if compared to a technique of high or low fidelity. We believe that there is an uncanny valley which is formed if a diagram is created using interaction fidelity and user effectiveness. Finding more points on this graph would help to support claims we have made with our hypothesis. There are several studies done previously in the field of virtual reality, however a vast majority of them considered interaction fidelity as a single construct. We argue that interaction fidelity is more complex involving independent components, with each of those components having an effect of the actual effectiveness of an interface. In addition, the intention of the designer can also have influence on how effective an interface can be. In this study we are going to be doing a deeper look into devices which attempt to overcome the limitations of physical space which we will call semi-natural interfaces. Semi-natural interfaces are sometimes difficult to use at first due to mismatch of cues or possibly due to a lack of fidelity, but training has been shown to be beneficial to overcome this difficulty. As of today, designers have not yet found a fully general solution to walking in large virtual environments. / Master of Science
419

The mechanics of landing when stepping down in unilateral lower-limb amputees

Twigg, Peter C., Jones, S.F., Scally, Andy J., Buckley, John January 2006 (has links)
The ability to successfully negotiate stairs and steps is an important factor for functional independence. While work has been undertaken to understand the biomechanics of gait in lower-limb amputees, little is known about how amputees negotiate stairs and steps. This study aimed to determine the mechanics of landing in unilateral lower-limb amputees when stepping down to a new level. A secondary aim was to assess the effects of using a shank-mounted shock-absorbing device (Tele-Torsion Pylon) on the mechanics of landing. Methods Ten unilateral amputees (five transfemoral and five transtibial) and eight able-bodied controls performed single steps down to a new level (73 and 219 mm). Trials were repeated in amputees with the Tele-Torsion Pylon active and inactive. The mechanics of landing were evaluated by analysing peak limb longitudinal force, maximal limb shortening, lower extremity stiffness, and knee joint angular displacement during the initial contact period, and limb and ankle angle at the instant of ground-contact. Data were collected using a Vicon 3D motion analysis system and two force platforms. Findings Amputees landed on a straightened and near vertical limb. This limb position was maintained in transfemoral amputees, whereas in transtibial amputees knee flexion occurred. As a result lower extremity stiffness was significantly greater in transfemoral amputees compared to transtibial amputees and able-bodied controls (P < 0.001). The Tele-Torsion Pylon had little effect on the mechanics of landing in transtibial amputees, but brought about a reduction in lower extremity stiffness in transfemoral amputees (P < 0.05). Interpretation Amputees used a stepping strategy that ensured the direction of the ground reaction force vector was kept anterior of the knee joint centre. Using a Tele-Torsion Pylon may improve the mechanics of landing during downward stepping in transfemoral amputees.
420

An Investigation into Locomotion Techniques for Use in Virtual Reality Games

Moore, Cameron Alexander 26 January 2023 (has links)
The Virtual Reality (VR) industry has experienced growth in recent years with companies such as HTC, Meta, and Valve releasing more consumer-grade headsets. While certain companies such as Meta are pushing for more productivity focused applications of VR, VR remains a primary target for games. Locomotion is still a fundamental problem in games and other applications. Over the years, many researchers have examined application-agnostic and domain-specific techniques. However, few studies have been conducted on techniques specific for the environments and challenges found in first-person games. This thesis contributes with the design and evaluation of new locomotion techniques for VR games. We conducted a user study with 27 participants to evaluate one novel techniques (Repeated Short-Ranged Teleports (RSRT)), a node-based technique (Continuous Movement Pads (CMP)), and a grabbing metaphor (World Grab) with popular techniques (Smooth Locomotion, Teleport). Most preferred by participants, we found that CMP could be a suitable alternative for games compared to Smooth Locomotion and Teleport based on performance data such as time, damage taken, overall usability from System Usability Scale Questionnaires, and overall workload measured from the NASA Task-Load Index Questionnaire. We also found that RSRT and World Grab were least preferred overall and performed measurably worse in terms of time, number of falls in a section designed to measure precision and accuracy, usability, and overall workload. / Master of Science / The Virtual Reality (VR) industry has experienced growth in recent years with companies such as HTC, Meta, and Valve releasing more consumer-grade headsets. While certain companies such as Meta are pushing for more productivity focused applications of VR, VR remains a primary target for games. Locomotion or movement within VR is a problem that does not just have one answer. There are many ways to move around in VR, with many researchers having examined the topic. This thesis explores the different methods of VR locomotion and provides information about a user study conducted regarding several novel techniques. We conducted a user study with 27 participants to evaluate one novel techniques (Repeated Short-Ranged Teleports), a node-based technique (Continuous Movement Pads), and a method (World Grab) based on a metaphor for moving in VR with more traditional techniques (Smooth Locomotion, Teleport). Based on the results of the study, we found that Continuous Movement Pads could be a suitable alternative for games compared to Smooth Locomotion and Teleport based on performance data and qualitative analysis of participants' preferences. However, we also found that Repeated Short-Ranged Teleports and World Grab were least preferred overall.

Page generated in 0.101 seconds