• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 243
  • 92
  • 34
  • 24
  • 15
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 870
  • 204
  • 191
  • 173
  • 149
  • 129
  • 125
  • 118
  • 114
  • 82
  • 75
  • 72
  • 69
  • 63
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Proposição de um reator fotocatalitico para degradação de fenol / Proposition of a photocatalytic reactor for degradation of phenol

Paschoalino, Flavia Cristina Sertori, 1982- 11 July 2008 (has links)
Orientadores: Elizabete Jordão, Carlos Augusto de Moraes Pires / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-12T09:13:33Z (GMT). No. of bitstreams: 1 Paschoalino_FlaviaCristinaSertori_M.pdf: 5135552 bytes, checksum: e4bb125b1c8aa2e74689b42ad19d43bb (MD5) Previous issue date: 2008 / Resumo: O fenol e seus derivados estão presentes em efluentes de diversos processos industriais como refino de petróleo e indústria farmacêutica. Devido à sua característica recalcitrante e sua toxicidade, são poucos os processos biológicos capazes de degradá-lo adequadamente sem que uma grande diluição seja realizada, o que o direciona muitas vezes a tecnologias mais caras como a incineração ou o uso de reagentes oxidantes. Uma alternativa a estes métodos é a fotocatálise heterogênea, que é baseada na irradiação (UV) de um catalisador, promovendo a geração de radicais hidroxila ( OH) altamente reativos. Neste trabalho desenvolveu-se um fotoreator confeccionado em vidro PyrexTM, utilizando-se uma lâmpada de vapor de Hg de 250 W em seu centro, o qual era resfriado por uma camisa de vidro concêntrica a uma câmara externa de 290 mL reservada à passagem do efluente a ser tratado. O fotoreator foi acoplado a um recipiente de 500 mL, utilizando-se uma bomba para recirculação do efluente, tornando-o um reator em batelada com recirculação. A eficiência do reator foi avaliada utilizando-se TiO2 e ZnO como fotocatalisadores em suspensão aquosa de 0,5 ou 1,0 g L-1, e fenol a 100 ou 200 mg L-1 como solução-teste. A concentração de fenol foi medida em intervalos de tempo pré-determinados utilizando-se cromatógrafo a gás com detector por ionização em chama. O sistema demonstrou-se muito eficiente, pois atingiu em pouco tempo (135 min), independentemente do catalisador utilizado, a degradação quase que total de fenol para a solução-teste de 100 mg L-1, que é superior às concentrações normalmente utilizadas em trabalhos similares. Para as soluções de 200 mg L-1 a cinética foi mais lenta, mas o processo fotocatalítico foi mais eficiente do que os controles de fotólise e adsorção em todas as combinações testadas. / Abstract: Phenol and its derivatives are present in effluents from various industrial processes like oil refining and pharmaceutical industry. Due its recalcitrant character and toxicity, few biological processes are capable to degrade it properly, requiring expensive technologies such incineration or the use of oxidants. An alternative to these methods is the heterogeneous photocatalysis, which is based on irradiation (UV) of a catalyst, promoting the generation of hydroxyl radicals ( OH) highly reactive. In this work it was developed a photoreactor made in a PyrexTM glass, using a 250 W Hg vapor lamp at its center, which was cooled by a water flux that was concentric to a 290 mL irradiated chamber glass. The photoreactor was attached to a container of 500 mL, using a recirculation pump, making it in a batch reactor with recirculation. The efficiency of the reactor was evaluated by using TiO2 and ZnO as photocatalysis in 0,5 or 1,0 g L-1 slurries, and phenol at 100 or 200 mg L-1 as a solution-test. The concentration of phenol was measured at pre-determined time intervals by using a gas chromatograph with a flame ionization detector. The system proved to be very efficient, because reached in a short time (135 minutes), regardless of the catalyst used, the almost total degradation to the solution of phenol-test of 100 mg L-1, which is higher than the concentrations usually used in similar work. For solutions of 200 mg L-1 the kinetics was slower, but the photocatalytic process was more efficient than the controls of photolysis and adsorption in all combinations tested. / Mestrado / Sistemas de Processos Quimicos e Informatica / Mestre em Engenharia Química
242

Obtenção controlada das nanopartículas e das fases cristalinas do dióxido de titânio / Getting control of nanoparticles and crystalline phases of titanium dioxide

Boery, Mirella Nagib de Oliveira 19 August 2018 (has links)
Orientador: Carlos Kenichi Suzuki / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-19T01:50:40Z (GMT). No. of bitstreams: 1 Boery_MirellaNagibdeOliveira_M.pdf: 2280722 bytes, checksum: de44802a3f6daef5829060dbc3396bce (MD5) Previous issue date: 2011 / Resumo: Este estudo acerca da obtenção controlada das nanopartículas e das fases cristalinas do dióxido de titânio investiga os parâmetros de deposição: fluxo de hidrogênio e oxigênio e, consequentemente, a razão dos gases H2/O2 na deposição pelo método aerossol em chamas. O objetivo é verificar a influência desses parâmetros no tamanho do cristalito, das nanopartículas e nas proporções das fases cristalinas (anatásio e rutilo) do dióxido de titânio (TiO2). Nas amostras caracterizadas são utilizadas as técnicas de difração de raios-X (DRX) e microscopia eletrônica de varredura (MEV). Atualmente o semicondutor TiO2 é um material muito utilizado na fotocatálise heterogênea, por isso muitos pesquisadores tentam otimizar as suas características a fim de obter um máximo de atividade fotocatalítica desse nanomaterial. Através do método aerossol em chamas, nanopartículas de TiO2 foram produzidas pela hidrólise e oxidação do tetracloreto de titânio (TiCl4), com a razão H2/O2 variando entre 0,17 e 3,00, possibilitando estabelecer as condições ideais para se produzir anatásio ou rutilo como única fase, ou a associação de anatásio mais rutilo. Observou-se que a razão H2/O2 possui uma relação direta com as fases cristalinas do dióxido de titânio e com o crescimento dos cristalitos das nanopartículas de TiO2, sendo possível neste trabalho produzir nanopartículas de TiO2 com fase cristalina e tamanho das nanopartículas controladas sem tratamento térmico. Após o tratamento térmico os cristalitos de TiO2 não tiveram grande aumento, mas como esperado, a fase cristalina predominou o rutilo / Abstract: This study aimed to investigated the deposition parameters: flow of hydrogen and oxygen, and consequently the ratio of gases H2/O2 on deposition by flame aerosol method in order to check the influence of these parameters on the crystallite size, and proportions of nanoparticles crystalline phases (anatase and rutile) of titanium dioxide (TiO2), and the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Nowadays semiconductor TiO2 is a material widely used in photocatalysis, because of this, many researchers try to optimize their characteristics in order to achieve maximum photocatalytic activity of this nanomaterial. Through the flame aerosol method, nanoparticles of TiO2 were produced by hydrolysis and oxidation of titanium tetrachloride (TiCl4), with reason H2/O2 ranging between 0.17 and 3.00, making it possible to establish the ideal conditions to produce pure anatase , pure rutile or association of anatase more rutile. It was observed that the reason H2/O2 has a direct relationship with the crystalline phases of titanium dioxide and the growth of crystallites of TiO2 nanoparticles, it was possible to produce nanoparticles of TiO2 with controlled crystalline phase and size of nanoparticles without heat treatment. After heat treatment, the crystallites of TiO2 have no significant increase, but as expected, the rutile crystalline phase predominated / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
243

Degradação de compostos orgânicos voláteis em fase gasosa por fotocatálise heterogênea com Ti 'O IND. 2'/UV / Degradation of volatile organic compounds in gas phase by heterogeneous photocatalysis with Ti 'O IND. 2'/UV

Rochetto, Ursula Luana 20 August 2018 (has links)
Orientador: Edson Tomaz / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-20T15:20:31Z (GMT). No. of bitstreams: 1 Rochetto_UrsulaLuana_M.pdf: 1487401 bytes, checksum: 7ee4393dada036765daf251f3b1f97d9 (MD5) Previous issue date: 2012 / Resumo: O estudo de técnicas eficazes e economicamente viáveis para o tratamento de compostos orgânicos voláteis (COV) tem recebido maior importância nas pesquisas ambientais. Neste trabalho apresenta-se a fotocatálise heterogênea em fase gasosa para a degradação de o-xileno, n-hexano, n-octano, n-decano, metilciclohexano e 2,2,4-trimetilpentano. O sistema experimental compunha-se de um reator anular pistonado de titânio contendo um cilindro de quartzo com uma lâmpada UV de 100 W centralizada a 1,7 cm das paredes de quartzo. Um filme de dióxido de titânio (TiO2) foi imobilizado nas paredes internas do reator e utilizado como catalisador. Todas as medições foram realizadas depois que uma condição de estado estacionário foi alcançada e o monitoramento foi feito na entrada e na saída do sistema. As taxas de conversão foram estudadas em uma ampla faixa de tempos de residência obtendo-se conversão de 90% ou acima para tempos de residência a partir de 20 segundos. Durante a realização dos experimentos a temperatura da parede do reator foi monitorada e permaneceu entre 52 e 62 °C, sua influência nas taxas de degradação foi desprezível, uma vez que um experimento realizado com reator encamisado a 15 °C não alterou os resultados obtidos. O efeito da umidade relativa também foi avaliado obtendo-se uma faixa ideal de trabalho de 10 a 80%, com brusco decaimento da conversão para valores fora desta faixa. Ao variar a concentração inicial do COV entre 60 e 110 ppmv as curvas de degradação não sofreram alterações. Foi observada perda de atividade catalítica apenas para o-xileno após 30 minutos de reação sendo o catalisador reativado com solução de peróxido de hidrogênio, iluminação UV e reaplicação da camada catalítica. A cinética estudada sugere uma taxa de reação de primeira ordem e devido às baixas concentrações dos compostos utilizadas, o modelo de adsorção de Langmuir-Hinshelwood também foi aplicável. A fotocatálise heterogênea em fase gasosa demonstrou ser um processo eficaz na degradação dos COV testados, obtendo-se altas conversões para os sistemas otimizados / Abstract: The study of effective and economically viable techniques on the treatment of volatile organic compounds (VOC) has being highlighted as an important parameter on the environmental research. In this work we present an overview over the heterogeneous photocatalysis performed in gas phase towards the degradation of o-xylene, n-hexane, n-octane, n-decane, methylcyclohexane and 2,2,4-trimethylpentane. The experimental set-up was composed by a titanium plug flow reactor vessel containing a quartz tube with a 100 W UV lamp placed at center position from 1.7 cm to the quartz wall. A titanium dioxide (TiO2) film was immobilized on the internal walls of the reactor and used as catalyst. All measurements were taken after a steady state condition has been reached and evaluated at the inlet and outlet of the system. The conversion rates were studied in a wide range of residence times yielding to a 90% or above conversion as from 20 seconds of residence time. During the experiments the temperature of the reactor's wall was monitored and remained between 52 and 62 °C. The temperature influence over the degradation rates was negligible once a control experiment performed at 15 °C did not modify the outgoing results. The humidity effect was also evaluated showing an ideal working range of 10 - 80% with abrupt conversion decay outside the range. By varying the initial concentration between 60 and 110 ppmv the VOC degradation curves remained unchanged. Loss over the catalytic activity was only observed for o-xylene after 30 minutes of reaction, the catalyst was reactivated with a solution of hydrogen peroxide and UV light followed by redeposition of the catalytic layer. The kinetic study suggests a first order reaction rate and due to the low concentrations of compounds used the Langmuir-Hinshelwood adsorption model was also applicable. The heterogeneous photocatalysis in gas phase was proved to be an effective process for the degradation of the VOC tested yielding to high conversion values for the optimized systems / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
244

Surface Properties of Titanium dioxide and its Structural Modifications by Reactions with Transition Metals

Halpegamage, Sandamali 16 November 2016 (has links)
Surfaces of metal oxides play a vital role in many technologically important applications. The surfaces of titanium dioxide, in particular, show quite promising properties that can be utilized in solid-state gas sensing and photocatalysis applications. In the first part of this dissertation we investigate these properties of TiO2 surfaces through a vigorous surface scientific approach. In the second part, we investigate the possibilities of modifying the TiO2 surfaces by depositing multi-component transition metal oxide monolayers so that the properties of bare TiO2 surface can be influenced in a beneficial way. For instance, via formation of new surface sites or cations that have different valance states, the chemisorption and catalytic properties can be modified. We use sophisticated experimental surface science techniques that are compatible with ultra-high vacuum technology for surface characterization. All the experimental results, except for the photocatalysis experiments, were compared to and verified by supporting DFT-based theoretical results produced by our theory collaborators. TiO2 based solid-state gas sensors have been used before for detecting trace amounts of explosives such as 2,4-dinitrololuene (DNT), a toxic decomposition product of the explosive 2,4,6-trinitrotoluene (TNT) that have very low vapor pressure. However, the adsorption, desorption and reaction mechanism were not well- understood. Here, we investigate 2,4-DNT adsorption on rutile-TiO2(110) surface in order to gain insight about these mechanisms in an atomistic level and we propose an efficient way of desorbing DNT from the surface through UV-light induced photoreactions. TiO2 exists in different polymorphs and the photocatalytic activity differs from one polymorph to another. Rutile and anatase are the most famous forms of TiO2 in photocatalysis and anatase is known to show higher activity than rutile. The photoactivity also varies depending on the surface orientation for the same polymorph. So far, a reasonable explanation as to why these differences exist was not reported. In our studies, we used high quality epitaxial rutile and anatase thin films which enabled isolating the surface effects from the bulk effects and show that it is the difference between the charge carrier diffusion lengths that causes this difference in activities. In addition to that, using different surface orientations of rutile-TiO2, we show that the anisotropic bulk charge carrier mobility may contribute to the orientation dependent photoactivity. Moreover, we show that different surface preparation methods also affect the activity of the sample and vacuum reduction results in an enhanced activity. In an effort to modify the TiO2 surfaces with monolayer/mixed monolayer oxides, we carried out experiments on (011) orientation of single crystal rutile TiO2 with few of the selected transition metal oxides namely Fe, V, Cr and Ni. We found that for specific oxidation conditions a monolayer mixed oxide is formed for all M (M= Fe, V, Cr, Ni), with one common structure with the composition MTi2O5. For small amounts of M the surface segregates into pure TiO2(011)-2×1 and into domains of MTi2O5indicating that this mixed monolayer oxide is a low energy line phase in a compositional surface phase diagram. The oxygen pressure required for the formation of this unique monolayer structure increases in the order of V2O5 mixed monolayer oxide by DFT-based simulations was verified by X-ray photoemission diffraction measurements performed at a synchrotron facility.
245

Etude de la croissance de couches minces de TiO2 et TiO2 / SiO2 par torche plasma micro-ondes à la pression atmosphérique / Study of TiO2 and TiO2 / SiO2 thin film growth using an atmospheric pressure microwave plasma torch

Gazal, Yoan 27 November 2015 (has links)
Un dispositif de dépôt chimique en phase vapeur à l’air libre, utilisant une torche à injection axiale (TIA), a été développé pour l’élaboration de couches minces de TiO2 et TiO2/SiO2. Les effets des paramètres de dépôt comme la distance torche-substrat (d), la puissance micro-onde incidente et le débit de précurseur de titane (TTIP) sur (i) la morphologie et (ii) la structure cristalline des couches ont été étudiés. Dans la mesure où ces couches sont appliquées dans le domaine de la photocatalyse hétérogène, l’optimisation du procédé vise dans un premier temps à permettre l’obtention d’une grande surface spécifique et à favoriser la croissance de la phase anatase. En plus de l’étude de la phase plasma (par spectroscopie d’émission optique) et des interactions thermiques plasma – surface, une caractérisation complète du matériau obtenu dans les conditions optimisées ont permis de proposer un mécanisme de croissance de la couche en mode statique. Ce dernier met en évidence une croissance par réaction de surface dans la zone centrale du dépôt et une croissance par agglomération de nanoparticules préalablement formées en phase plasma, dans sa zone périphérique. Enfin, la potentialité du dépôt d’oxydes mixtes TiO2/SiO2 a été explorée sur une large gamme de ratio Si/Ti. Il a été montré que quelle que soit la distance torche – substrat, trois phases sont détectées : SiO2, TiO2 et TixSiyOz. Lorsque d=10 mm, la phase de TiO2 est cristallisée sous la forme anatase, alors que lorsque d=30mm, l’ensemble de la couche est amorphe. L’addition d’une faible quantité de silice (environ 3%) au TiO2 cristallisé permet d’augmenter l’activité photocatalytique du matériau d’environ 15%. Une étude préliminaire a de plus permis d’obtenir un dépôt sur de larges surface grâce à la mise en mouvement du substrat, ouvrant la voie à de plus larges applications. / An open air chemical vapour deposition process, using an axial injection torch (TIA) was developed for the deposition of TiO2 and TiO2 / SiO2 thin films. The effects of deposition parameters such as the torch-to-substrate distance (d), the incident microwave power and the titanium precursor (TTIP) flow rate on (i) the morphology and (ii) the crystalline structure of the layers were investigated . Since these layers are applied in the field of heterogeneous photocatalysis, the process optimization aimed to obtain a high surface area and to promote the growth of anatase phase. Besides the study of the plasma phase (by optical emission spectroscopy) and the plasma - surface interactions, a complete characterization of the film deposited in the optimized conditions enabled to provide a growth mechanism in the static mode. It was suggested that (i) the central zone of the deposit results from surface reactions and (ii) the peripheral zone results from the surface agglomeration of nanoparticles previously formed in plasma phase. Finally, the deposition of mixed oxides TiO2 / SiO2 was investigated over a wide range of Si / Ti ratios. It has been shown that whatever the torch-to-substrate distance, three phases were detected: SiO2, TiO2 and TixSiyOz. When d = 10 mm, the TiO2 layer is crystallized in the anatase form, whereas when d = 30 mm, the entire layer is amorphous. The addition of a small amount of silica (about 3%) to the anatase TiO2 increased the photocatalytic activity of about 15%. A preliminary study consisting in the deposition on large areas by moving the substrate, opens the way for wider applications.
246

Development of Radical Cascade via Gold(I) Photocatalysis and Application towards One-Pot Bromination/Carbocyclization

Lanoix, Stéphanie January 2015 (has links)
Radical chemistry is a crucial tool to organic chemists. Recent trends in the field have been directed towards the development of photocatalysts capable of generating a radical through a renewable source like sunlight using a single electron transfer mechanism. The use of Au2dppm2Cl2, having a stronger reducing potential, allows an expansion of the reactivity to those achieved by iridium and ruthenium catalysts.1 The focus of this thesis is axed on the development of Au2dppm2Cl2 as an efficient photoredox catalyst for a tandem one-pot catalysis and its application in a dual catalytic system. The use of Au2dppm2Cl2 in a dual catalysis for the synthesis of β-amino acids was undertaken. The problems encountered over the course of the investigation showed an insufficient oxidation potential of the photoredox catalyst in addition to the facile homolytic cleavage of the C-halogen bond under UV light. However, this shows great promise for the achievement of beta amino acids using solely organocatalysis. The development of a tandem one-pot radical cyclization for the synthesis of fused- carbocycles, which are frequently encountered scaffolds in diterpenoid natural products, is reported. The initial experiments were conducted on a model substrate, enabling the verification of the proposed hypothesis. The success of this methodology was then applied to various substrates affording the desired fused 5 membered rings in good yields. These reactions show tremendous potential in the field of total synthesis for the rapid access of complex molecular structures. (1) Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barriault, L. Angew. Chem. Int. Ed. 2013, 52, 13342.
247

Preparation and Optimization of Novel Visible-Light-Active Photocatalysts for Waste-Water Treatment

Ran, Rong January 2016 (has links)
Photocatalysis is a series of advanced light-induced redox reaction processes resulting in the degradation and mineralization of organic pollutants in the presence of oxygen and water. Due to their capability to destroy contaminants under mild conditions, photocatalytic processes have attracted considerable attention in the field of waste-water treatment. However, photocatalytic reactions using the traditional TiO2 photocatalyst suffer from low energy efficiencies under solar irradiation. This low efficiency in the utilization of solar energy lies in its incapability in absorbing visible lights and also the high recombination rate of photo-excited species in photocatalysts. In addition, difficulties in the separation of fluids from micro- or nano-scale catalysts in large scale systems substantially impact cost efficiency in practice. In this thesis, strategies are explored which address these issues in order to improve the feasibility of solar photocatalysis. Two branches of photocatalytic transition metal-oxide semiconductor materials are investigated, namely bismuth-based and silver-based multi-phase heterogeneous photocatalysts. This research is focused on the design of visible-light-active metal-oxide photocatalysts to increase the absorption of visible light and to decrease the rates of electron-hole recombination, resulting in a high photocatalytic efficiency in regards to the degradation of organic pollutants. BiVO4 powder, synthesized from freshly made potassium metavanadate was prepared via hydrothermal treatment, characterized and experimentally investigated for the degradation of rhodamine B under visible light irradiation. The crystal structures and the specific surface areas of the composites, based on BiVO4 single phase crystal structures, are discussed. A multi-phase silver species (Ag2O/Ag3VO4/Ag4V2O7) photocatalyst was synthesized by adjusting the molar ratio of silver to vanadium (Ag to V) via hydrothermal method. The stabilities of as-prepared silver species composites regarding crystal structural changes due to photocatalytic reactions are investigated. Multi-phase silver species composites assisted with graphene oxide (GO-Ag2O/Ag3VO4/AgVO3) were synthesized at room temperature, and exhibited high visible-light photocatalytic activities regarding the degradation of model organic pollutants. The effect of graphene oxide addition on the photoactivity and on the photocorrosion of silver species composites under VLI is explored. The synergistic roles of each individual phase incorporated into the multi-phase composites are discussed regarding the photocatalytic performance.
248

Investigating the Effect of Nanoscale Changes on the Chemistry and Energetics of Nanocrystals with a Novel Photoemission Spectroscopy Methodology

Liao, Michael W., Liao, Michael W. January 2017 (has links)
This dissertation explores the effect of nanometer-scale changes in structure on the energetics of photocatalytic and photovoltaic materials. Of particular interest are semiconductor nanocrystals (NCs), which have interesting chemical properties that lead to novel structures and applications. Chief among these properties are quantum confinement and the high surface area-to-volume ratio, which allow for chemical tuning of the energetics and structure of NCs. This tunable energetic landscape has led to increasing application of NCs in various areas of research, including solar energy conversion, light-emitting diode technologies, and photocatalysis. However, spectroscopic methods to determine the energetics of NCs have not been well developed, due to chemical complexities of relevant NCs such as polydispersity, capping ligand effects, core-shell structures, and other chemical modifications. In this work, we demonstrate and expand the utility of photoelectron spectroscopy (PES) to probe the energetics of NCs by considering the physical processes that lead to background and secondary photoemission to enhance photoemission from the sample of interest. A new methodology for the interpretation of UP spectra was devised in order to emphasize the minute changes to the UP spectra line shape that arise from nanoscopic changes to the NCs. We applied various established subtractions that correct for photon source satellites, secondary photoelectrons, and substrate photoemission. We then investigated the effect of ligand surface coverage on the surface chemistry and density of states at the top of valence band (VB). We systematically removed ligands by increasing numbers of purification steps for two diameters of NCs and found that doing so increased photoemission density at the top of the VB, which is due to undercoordinated surface atoms. Deeper VB structure was also altered, possibly due to reorganization of the atoms in the NC. Using the new UPS interpretation methodology, we examined the evolution of the valence band energy (EVB) of CdSe NCs as it was modified from spherical NC to rod to Au-NP tipped nanorod (NR). We also employed potential-modulated attenuated total reflectance spectroscopy (PM-ATR) to probe the conduction band energy (ECB) of the series. The EVB decreased with each modification, which is predicted with a band-bending model. This trend was also observed in the ECB, as revealed by spectroelectrochemistry, along with the appearance of new metal-semiconductor states in the band gap. UPS was finally used to investigate the even more complex Pt-NP tipped CdSe@CdS core@shell NR heterostructure. The addition of the CdS shell decreases the EVB relative to CdSe, as expected from common cation II-VI compounds. The Pt-NC increases the EVB, which, like the Au-CdSe NR, is predicted by employing a band-bending model. XPS revealed that PtSx-like chemical states were formed near the CdS-Pt interface. These experiments, along with the improved UP spectra interpretation methodology, demonstrate the wealth of information regarding surface chemistry and energetics that can be obtained with PES which can be applied to not only NCs, but also to metal oxide or molecular thin films.
249

Nanocomposites interactifs supportes en tant que photocatalyseurs contemporains et materiaux germicides : concepts et applications / Supported Interactive Nanocomposites as Contemporary Photocatalysts and Germicidal Materials : concept and Application

Gärban, Razvan Vasile 12 July 2011 (has links)
La recherche actuelle est entreprise dans l’optique de la révision complète du design chimique et des principes d’élaboration des photocatalyseurs composites supportés (PCCS) afin d’améliorer considérablement leurs capacités réactionnelles, la durabilité de leur action en temps et de résoudre le problème de pollution secondaire des milieux à traiter. Les travaux effectués ont permis la mise en œuvre d’un nouveau modèle de PCCS interactifs dont les composants photosensibles sont en fortes interactions chimiques avec leurs supports appartenant au groupe d’acides de Lewis. Cette particularité assure une grande sélectivité d’action des produits développés, leur fonctionnement durable en régime stationnaire, évite la pollution secondaire des effluents à traiter et garanti une performance photocatalytique comparable à celle du produit de référence Degussa P25.Les travaux réalisés ont permis d’acquérir de nouvelles connaissances scientifiques concernant le rôle de l’acidité de surface dans l’action photocatalytique et du taux de dissociation de l’eau adsorbée sur le produit actif. De plus, un ensemble de huit paramètres principaux assurant les meilleures conditions d’exploitation des PCCS a été établi.Les PCCS développés peuvent être appliqués, tout d’abord, dans le domaine de l’incinération photocatalytique des COV. Un prototype de filtre dynamique capable de traiter 50 m3/h de l’air avec une consommation d’énergie modérée, est conçu. Un nouveau type de matériaux composites à vocation germicide à base de polymères synthétiques fait également l’objet de la partie applicative de ces travaux de thèse. / The current research is undertaken in the context of the complete reconsideration of the supported composite photocatalysts (SCPC) chemical design and elaboration principles in order to improve their reaction capacities, to assure the sustainability of their action in time and to resolve the secondary pollution problem for the media to treat. This work enabled the implementation of a new model of interactive SCPC in which the photosensitive components occur in a strong chemical interaction with their supports belonging to the Lewis acid group. This feature provides the developed products with high selectivity, allows them to function in the stationary conditions, avoids the secondary pollution effect and guarantees the photocatalytic performance comparable with the one of the reference industrial photocatalyst Degussa P25. An important scientific knowledge on the role of the surface acidity in the photocatalytic action and on the dissociation state of the water adsorbed over the active product was acquired. Apart from this, a set of eight main parameters ensuring the best SCPC operation properties was established. The developed SCPC are forecasted to be firstly applied in the photocatalytic VOC oxidation processes. A prototype of such filter capable to treat 50 m3/h of air, having modest energy consumption, was designed. A new composite material with germicidal properties elaborated using synthetic polymer supports, also constitutes a subject of the applications part of this thesis.
250

The Investigation of Photocatalysts and Iron Based Materials in the Oxidation and the Adsorption of Toxic Organic and Chromium Materials

Jiang, Wenjun 13 November 2013 (has links)
The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ~ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.

Page generated in 0.0699 seconds