• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 348
  • 243
  • 92
  • 34
  • 24
  • 15
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 866
  • 204
  • 190
  • 173
  • 149
  • 129
  • 125
  • 117
  • 113
  • 82
  • 74
  • 71
  • 69
  • 63
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

Development of Bismuth Oxide-Based Materials for Iodide Capture and Photocatalysis

Zhang, Liping 26 November 2018 (has links)
No description available.
782

The Charge-Carrier Dynamics and Photochemistry of CeO<sub>2</sub> Nanoparticles

Pettinger, Natasha January 2019 (has links)
No description available.
783

Solar light-driven multifunctional nanocomposites for a sustainable wastewater treatment

Fan, Siyuan 21 July 2023 (has links)
Die Verwendung von pharmazeutischen Wirkstoffen (API) hat die moderne medizinische Behandlung erneuert und die menschliche Gesundheit vor Infektionskrankheiten geschützt. Andererseits werden Wirkstoffe in der Regel über Krankenhausabwässer oder Industrieabwässer in verschiedene Gewässer eingeleitet. Ihr kontinuierlicher Eintrag in die Umwelt hat eine ausgeglichene Umwandlungs-/Eliminierungsrate zur Folge und macht API zu 'pseudo-persistenten' Schadstoffen. Antibiotika gehören zur Gruppe der Wirkstoffe und werden in großem Umfang in Rohwasserquellen für Trinkwasser nachgewiesen. Die Konzentration der im Abwasser nachgewiesenen pharmazeutischen Verunreinigungen reicht von ng/L bis µg/L. Ciprofloxacin (CIP) wurde in Abwasser in extrem hohen Konzentrationen (bis zu 31 mg/L) nachgewiesen, die tausendmal höher sind als die für einige Bakterien toxischen Konzentrationen und es zum häufigsten Arzneimittel in Abwasser machen. Die zunehmende Konzentration von Antibiotika ist der Hauptgrund für die Entwicklung antibiotikaresistenter Bakterien, die eine Vielzahl von antibiotikaresistenten bakteriellen Infektionen verursachen. Von vielen pharmazeutischen Instituten wurde erwartet, dass sie neue Antibiotika entwickeln, um die antibiotikaresistenten Bakterien zu bekämpfen. Viele Studien über neue Antibiotika werden jedoch aufgrund der hohen Kosten und des Mangels an Innovation aufgegeben. Somit sind Antibiotika und antibiotikaresistente Bakterien widerspenstige Schadstoffe, die Anlass zu großer Sorge geben. Verschiedene konventionelle und moderne Techniken wie Ozonierung, Nanofiltration und biologische Methoden wurden zur Beseitigung von Schadstoffen eingesetzt. Dennoch sind teure Infrastrukturen, komplexe Systeme und ein hoher Bedarf an Platz und Energie (Strom, Gas) für die Umsetzung dieser Techniken erforderlich, die zudem nicht in der Lage sind, die in Spuren vorhandenen Schadstoffe zu entfernen. Daher werden fortgeschrittene Oxidationsverfahren (AOP) als interessante Lösung angesehen. AOPs sind chemische Behandlungen, die stark oxidierende Spezies, wie z. B. Hydroxylradikale, erzeugen können, um Schadstoffe in Abwässern abzubauen. Viele Studien wurden über den Einsatz der Photokatalyse durchgeführt, die eine der wichtigsten Untergruppen der AOPs ist. Die populärsten Photokatalysatoren, wie z.B. Halbleiter, werden seit dem zwanzigsten Jahrhundert wegen ihrer hohen photokatalytischen Effizienz und ihrer geringen Kosten in der Abwasserbehandlung eingesetzt. Allerdings haben diese Photokatalysatoren auch ihre Grenzen. Titandioxid, der am häufigsten verwendete Photokatalysator und Halbleiter mit großer Bandlücke, hat eine Bandlücke von 3,0 eV in der Rutilphase und 3,2 eV in der Anatasphase. Daher kann er hauptsächlich unter UV-Bestrahlung - die nur 4-5 % des Sonnenlichts ausmacht - photoaktiviert werden und erfordert den Einsatz künstlicher UV-Lichtquellen, um einen effizienten Photoabbau zu erreichen. Der Bedarf an externen Lichtquellen ist immer mit einem hohen Energiebedarf verbunden. Die weltweite Verknappung von Erdöl und Erdgas hat zu einer weit verbreiteten Besorgnis über die Energieversorgung geführt, da ein kalter und dunkler Winter befürchtet wird, insbesondere in der kritischen Situation der zunehmenden globalen Energiekrise. Diese Sorgen haben die Entwicklung alternativer, nachhaltiger Energiequellen in den Mittelpunkt gerückt. Die Lösung für all diese Probleme ist die Nutzung der Sonnenenergie. Eine florierende Forschung hat sich mit der Entwicklung von photokatalytischen Systemen beschäftigt, die im sichtbaren Bereich arbeiten. Allerdings machen ultraviolettes (UV) und sichtbares Licht zusammen nur die Hälfte der Photonen des Sonnenspektrums aus. Die verbleibenden Photonen im nahen Infrarot (NIR) werden für die Energieumwandlung noch zu wenig genutzt. Die Entwicklung praktischer Strategien zur Nutzung des NIR-Lichtanteils der Sonne ist von entscheidender Bedeutung, um die photokatalytische Effizienz für künftige industrielle Anwendungen zu erhöhen. Die Rückgewinnung und Wiederverwendung der verwendeten partikelförmigen Materialien ist ein weiterer mühsamer Schritt. Wie in neueren Studien beschrieben, erfordern die Partikeltrennverfahren höhere Kosten und komplizierte Systeme. Die Immobilisierung der Partikel auf einer Oberfläche wurde untersucht, wobei sich die Nachteile einer begrenzten Adsorptionsfläche und eines unzureichenden Kontakts mit Verunreinigungen oder Sekundärverschmutzungen durch das Auslaugen der Partikel aus den Trägermaterialien gezeigt haben. Ziel dieser Arbeit ist es, einen neuen Ansatz zur Herstellung effizienter solarbetriebener Tm3+-Photokatalysatoren auf UCNP-Basis zu demonstrieren, die aus relativ kostengünstigen Ausgangsstoffen (Poly(vinylalkohol) (PVA), Poly(acrylsäure) (PAA), Poly(etheretherketon) (PEEK)) und Spurenmengen von Lanthanidionen bestehen. Die Nanokomposit-Matrix besteht aus PVA und hydroxyliertem sulfoniertem PEEK (SPOH), die mit PAA-dekorierten UCNPs durch eine einfache Erhitzung bei 170 °C vernetzt wurden, was zu einem nicht auslaugenden porösen UCNP-Material führte. Die in die PVA/SPOH-Matrix eingebetteten UCNPs waren in der Lage, NIR-Licht zu absorbieren und die nach oben konvertierende Anregungsenergie auf die Polymermatrix zu übertragen, was zur Produktion von H2O2 (7,0-10-8 mol-L-1*min-1) führte. Dieses Material erwies sich auch unter Sonneneinstrahlung als funktionsfähig. Der so hergestellte Photokatalysator zeigte eine ausgezeichnete Adsorption (89%) und einen photokatalytischen Abbau (50%) in 4 Stunden gegenüber CIP sowie eine vielversprechende photokatalytische bakterizide Wirkung (55% in 1 Stunde) gegenüber E. coli unter Sonneneinstrahlung. Insgesamt deuten diese Ergebnisse darauf hin, dass dieses Nanokomposit den Weg für ein solarbetriebenes Abwasserreinigungsverfahren auf der Grundlage von hochkonvertierenden Nanopartikeln ebnen kann.
784

Ligand design for Ru(II) photosensitizers in photocatalytic hydrogen evolution

Rupp, Mira Theresa 07 1900 (has links)
This thesis was conducted as cotutelle-de-thèse between the Université de Montréal and the Universität Würzburg (Germany). Cette thèse a été réalisée en cotutelle de thèse entre l'Université de Montréal et l'Universität Würzburg (Allemagne). / Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas. Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h. L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. / This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases. Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h. Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. / In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt. Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert. Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann.
785

Theoretical Studies of Photoactive Metal Complexes with Applications in C-H Functionalization and Quantum Computing

Alamo Velazquez, Domllermut C. 05 1900 (has links)
Previous work was successful at delineating reaction pathways for the photoactivated synthesis of an amine, [CztBu(PyriPr)(NH2−PyriPr)], by double intramolecular C−H activation and functionalization via irradiating a metal(II) azido complex, [CztBu(PyriPr)2NiN3. The present work seeks to expand upon earlier research, and to substitute the metal with iron or cobalt, and to expand the study to photocatalyzed intermolecular C−H activation and functionalization of organic substrates. Density functional theory (DFT) – B3LYP/6-31+G(d') and APFD/Def2TZVP – and time-dependent density functional theory (TDDFT) were used to propose a detailed pathway comprised of intermediates of low, intermediate, or high spin multiplicity and photo-generated excited states for the reaction of the azido complex, [CztBu(PyriPr)2MN3] to form the amine complex [CztBu(PyriPr)M(NH2−PyriPr)], M = Co, Ni or Fe, and the intermediates along the reaction pathway. For applications on quantum computing, the photophysical properties of photoactive d8 nickel(II) complexes are modeled. Such systems take advantage of a two-level system pathway between ground to excited state electronic transitions and could be useful for the discovery of successful candidates for a room temperature qubit, the analogue of a classical computational bit. A modified organometallic model, inspired by a nitrogen vacancy selective intersystem crossing model in diamond, was developed to take advantage of the formation of excited states. Tanabe-Sugano diagrams predict areas where these excited states may relax via phosphorescent emission. Under Zeeman splitting, these transitions create the conditions required for a two-level system needed to design a functional organometallic qubit.
786

Conception, étude et applications de photocatalyseurs à base de cuivre et développement de diynes-1,3 tendus pour la bioconjugaison

Cruché, Corentin 09 1900 (has links)
Cette thèse s’articule autour de deux grands axes indépendants. Le premier s’aligne sur les intérêts du groupe Collins pour la photocatalyse avec des complexes à base de cuivre. La photocatalyse apparait comme une branche de la chimie permettant de débloquer des réactivités difficilement accessibles par la chimie thermique. Si la majorité des réactions photocatalysées utilise des catalyseurs à base de ruthénium ou d’iridium, les complexes de cuivre(I) sont une alternative digne d’intérêt. Cependant, une connaissance plus profonde de la relation structure/activité de ces complexes est encore nécessaire. Cette thèse tentera donc d’apporter des éléments de réponse à cette problématique, en particulier pour les complexes de cuivre(I) hétéroleptiques, possédant un ligand diimine et un ligand diphosphine. Le premier chapitre présente le concept de la photocatalyse et les caractéristiques des photocatalyseurs de cuivre. Une sélection d’exemples de réactions photocatalysées par des complexes de cuivre permet d’établir l’état de l’art pour différents types de mécanismes. Le chapitre 2 présente l’étude de ligands diimine possédant un système π-étendu dans des complexes. Les complexes correspondants ont été étudiés dans trois réactions passant par des voies mécanistiques différentes. Si les complexes sont actifs pour les réactions de transfert d’électrons et d’énergie, ils ne possèdent pas une efficacité supérieure aux complexes précédemment reportés. Le chapitre 3 est une extension du chapitre 2. En effet, les ligands possédant un système π-étendu précédemment reportés ont été modifiés pour pouvoir former des complexes de cuivre avec la diphosphine BINAP. Les nouveaux complexes ont de nouveau été étudiés dans les trois réactions différentes, mais leur activité est semblable à celle des complexes reportés dans le chapitre 2. Les complexes ont aussi été étudiés pour leur activité anticancéreuse, et des résultats prometteurs ont été découverts. Le chapitre 4 résume l’étude d’une bibliothèque étendue de complexes de cuivre(I) pour l’isomérisation d’alcènes E→Z. L’efficacité des complexes dans la réaction est reliée à leurs propriétés photophysiques. Un complexe optimal a été trouvé, et utilisé pour isomériser une série de 25 alcènes différents. L’utilisation de la chimie en flux continu a aussi permis la mise en échelle de la réaction. Enfin un procédé séquentiel ATRA/PI a permis la formation d’alcènes tri- et tétra-substitués à partir d’alcynes et de chlorures de sulfonyles. Le deuxième axe de cette thèse se base sur le développement de diynes-1,3 pour leur utilisation dans les réactions de « click » promues par la tension. Le chapitre 6 introduit les concepts de chimie « click » et de cycloaddition alcyne-azoture promue par la tension (SPAAC), et l’état de l’art des diynes-1,3 et des alcynes tendus. Le chapitre 7 présente donc le développement d’une nouvelle classe de diynes-1,3 tendus pour la réaction de SPAAC. La vitesse de la réaction est étudiée et des calculs computationnels viennent corroborer la réactivité observée. Un diyne-1,3 , 3,5-TPDY, a été utilisé dans une application de bioligation, et son utilisation dans une réaction de « click » avec une hydrazine a été montrée. / The thesis is structured around two independent themes. The first concerns the Collins Group's interest in copper-based complexes for photocatalysis. Photocatalysis is a branch of chemistry that aims to unlock reactivities that are difficult to access through thermally-promoted chemistry. While the majority of photocatalytic reactions use ruthenium- or iridium-based catalysts, copper(I) complexes are a valuable alternative, but a deeper understanding of the structure/activity relationship of the complexes is still required. The thesis will describe work to gain a better understanding of the reactivities and behavior of heteroleptic copper(I) complexes possessing a diimine ligand and a diphosphine ligand. The first chapter introduces the concept of photocatalysis and the characteristics of copper-based photocatalysts. A selection of examples of reactions photocatalyzed by copper complexes establishes the state of the art for different types of mechanisms. Chapter 2 presents the study of diimine ligands possessing a π-extended system in copper-based complexes. The corresponding complexes have been studied in 3 different photochemical reactions proceeding through different mechanistic pathways. While the complexes are active in electron and energy transfer reactions, they are not more efficient than previously reported complexes. Chapter 3 is an extension of Chapter 2, in which the π-extended ligands previously reported are modified to form copper complexes with the diphosphine, BINAP. The new complexes are again studied in the 3 different reactions, but their activity is similar to that of the complexes reported in chapter 2. The complexes are also being studied for their anticancer activity, and promising results have been uncovered. Chapter 4 summarizes the study of an extensive library of copper(I)-based complexes for the E→Z isomerization of alkenes. The efficiency of the complexes in the reaction is compared with their photophysical data. An optimal complex is found and used to isomerize a series of 25 different alkenes. The use of continuous flow chemistry also enabled the reactions to be scaled up. Finally, a sequential ATRA/PI process enabled the formation of tri- and tetra-substituted alkenes from alkynes and sulfonyl chlorides. The second theme of the thesis is based on the development of 1,3-diynes for use in strain-promoted "click" reactions. Chapter 6 introduces the concepts of click chemistry and SPAAC, and the state of the art of 1,3-diynes and strained alkynes. Chapter 7 presents the development of a new class of strained 1,3-diynes for the SPAAC reaction called TPDYs. The reaction rates are studied and computational calculations corroborate the observed reactivity. A 1,3-diyne, 3,5-TPDY, is applied to a bioligation process, and its use in a potential new "click" reaction with a hydrazine is shown.
787

Synthesis and Dynamics of Photocatalytic Type-II ZnSe/CdS/Pt Metal-Semiconductor Heteronanostructures

O'Connor, Timothy F., III 27 July 2012 (has links)
No description available.
788

Hydrothermal and Ambient Temperature Anchoring of Co (II) Oxygen Evolution Catalyst on Zeolitic Surfaces

Del Pilar Albaladejo, Joselyn January 2014 (has links)
No description available.
789

Understanding and Modifying TiO<sub>2</sub> for Aqueous Organic Photodegradation

Sun, Bo 26 September 2005 (has links)
No description available.
790

Novel Preparation of Nanostructured Titanium Dioxide Photocatalytic Particles, Films, Membranes, and Devices for Environmental Applications

Choi, Hyeok 02 July 2007 (has links)
No description available.

Page generated in 0.0548 seconds