11 |
Scaling limits of critical systems in random geometryPowell, Ellen Grace January 2017 (has links)
This thesis focusses on the properties of, and relationships between, several fundamental objects arising from critical physical models. In particular, we consider Schramm--Loewner evolutions, the Gaussian free field, Liouville quantum gravity and the Brownian continuum random tree. We begin by considering branching diffusions in a bounded domain $D\subset$ $R^{d}$, in which particles are killed upon hitting the boundary $\partial D$. It is known that such a system displays a phase transition in the branching rate: if it exceeds a critical value, the population will no longer become extinct almost surely. We prove that at criticality, under mild assumptions on the branching mechanism and diffusion, the genealogical tree associated with the process will converge to the Brownian CRT. Next, we move on to study Gaussian multiplicative chaos. This is the rigorous framework that allows one to make sense of random measures built from rough Gaussian fields, and again there is a parameter associated with the model in which a phase transition occurs. We prove a uniqueness and convergence result for approximations to these measures at criticality. From this point onwards we restrict our attention to two-dimensional models. First, we give an alternative, ``non-Gaussian" construction of Liouville quantum gravity (a special case of Gaussian multiplicative chaos associated with the 2-dimensional Gaussian free field), that is motivated by the theory of multiplicative cascades. We prove that the Liouville (GMC) measures associated with the Gaussian free field can be approximated using certain sequences of ``local sets" of the field. This is a particularly natural construction as it is both local and conformally invariant. It includes the case of nested CLE$_{4}$, when it is coupled with the GFF as its set of ``level lines". Finally, we consider this level line coupling more closely, now when it is between SLE$_{4}$ and the GFF. We prove that level lines can be defined for the GFF with a wide range of boundary conditions, and are given by SLE$_{4}$-type curves. As a consequence, we extend the definition of SLE$_{4}(\rho)$ to the case of a continuum of force points.
|
12 |
A Study on Rapidly Exploring Random Tree Algorithms for Robot Path PlanningSharma, Sahil 01 September 2023 (has links) (PDF)
Robot path planning is a critical feature of autonomous systems. Rapidly-exploring Random Trees (RRT) is a path planning technique that randomly samples the robot configuration space to find a path between the start and end point. This thesis studies and compares the performance of four important RRT algorithms, namely, the original RRT, the optimal RRT (also termed RRT*), RRT*-Smart, and Informed RRT* for six different environments. The performance measures include the final path length (which is also the shortest path length found by each algorithm), time to find the first path, run time (of 1000 iterations) for each algorithm, total number of sampling nodes, and success rate (out of 100 runs). It is found that both RRT*-Smart and Informed RRT* algorithm result in shorter path lengths than the original RRT and RRT*. Typically, RRT*-Smart can find a suboptimal path in less number of iterations while the Informed RRT* is able to find the shortest path with increased number of iterations. On the other hand, the original RRT and RRT* are better suited for real-time applications as the Informed RRT* and RRT*-Smart have longer run time due to the additional steps in their processes.
|
13 |
Split Trees, Cuttings and ExplosionsHolmgren, Cecilia January 2010 (has links)
This thesis is based on four papers investigating properties of split trees and also introducing new methods for studying such trees. Split trees comprise a large class of random trees of logarithmic height and include e.g., binary search trees, m-ary search trees, quadtrees, median of (2k+1)-trees, simplex trees, tries and digital search trees. Split trees are constructed recursively, using “split vectors”, to distribute n “balls” to the vertices/nodes. The vertices of a split tree may contain different numbers of balls; in computer science applications these balls often represent “key numbers”. In the first paper, it was tested whether a recently described method for determining the asymptotic distribution of the number of records (or cuts) in a deterministic complete binary tree could be extended to binary search trees. This method used a classical triangular array theorem to study the convergence of sums of triangular arrays to infinitely divisible distributions. It was shown that with modifications, the same approach could be used to determine the asymptotic distribution of the number of records (or cuts) in binary search trees, i.e., in a well-characterized type of random split trees. In the second paper, renewal theory was introduced as a novel approach for studying split trees. It was shown that this theory is highly useful for investigating these types of trees. It was shown that the expected number of vertices (a random number) divided by the number of balls, n, converges to a constant as n tends to infinity. Furthermore, it was demonstrated that the number of vertices is concentrated around its mean value. New results were also presented regarding depths of balls and vertices in split trees. In the third paper, it was tested whether the methods of proof to determine the asymptotic distribution of the number of records (or cuts) used in the binary search tree, could be extended to split trees in general. Using renewal theory it was demonstrated for the overall class of random split trees that the normalized number of records (or cuts) has asymptotically a weakly 1-stable distribution. In the fourth paper, branching Markov chains were introduced to investigate split trees with immigration, i.e., CTM protocols and their generalizations. It was shown that there is a natural relationship between the Markov chain and a multi-type (Galton-Watson) process that is well adapted to study stability in the corresponding tree. A stability condition was presented to describe a phase transition deciding when the process is stable or unstable (i.e., the tree explodes). Further, the use of renewal theory also proved to be useful for studying split trees with immigration. Using this method it was demonstrated that when the tree is stable (i.e., finite), there is the same type of expression for the number of vertices as for normal split trees.
|
14 |
Machine learning and dynamic programming algorithms for motion planning and controlArslan, Oktay 07 January 2016 (has links)
Robot motion planning is one of the central problems in robotics, and has received considerable amount of attention not only from roboticists but also from the control and artificial intelligence (AI) communities. Despite the different types of applications and physical properties of robotic systems, many high-level tasks of autonomous systems can be decomposed into subtasks which require point-to-point navigation while avoiding infeasible regions due to the obstacles in the workspace. This dissertation aims at developing a new class of sampling-based motion planning algorithms that are fast, efficient and asymptotically optimal by employing ideas from Machine Learning (ML) and Dynamic Programming (DP). First, we interpret the robot motion planning problem as a form of a machine learning problem since the underlying search space is not known a priori, and utilize random geometric graphs to compute consistent discretizations of the underlying continuous search space. Then, we integrate existing DP algorithms and ML algorithms to the framework of sampling-based algorithms for better exploitation and exploration, respectively. We introduce a novel sampling-based algorithm, called RRT#, that improves upon the well-known RRT* algorithm by leveraging value and policy iteration methods as new information is collected. The proposed algorithms yield provable guarantees on correctness, completeness and asymptotic optimality. We also develop an adaptive sampling strategy by considering exploration as a classification (or regression) problem, and use online machine learning algorithms to learn the relevant region of a query, i.e., the region that contains the optimal solution, without significant computational overhead. We then extend the application of sampling-based algorithms to a class of stochastic optimal control problems and problems with differential constraints. Specifically, we introduce the Path Integral - RRT algorithm, for solving optimal control of stochastic systems and the CL-RRT# algorithm that uses closed-loop prediction for trajectory generation for differential systems. One of the key benefits of CL-RRT# is that for many systems, given a low-level tracking controller, it is easier to handle differential constraints, so complex steering procedures are not needed, unlike most existing kinodynamic sampling-based algorithms. Implementation results of sampling-based planners for route planning of a full-scale autonomous helicopter under the Autonomous Aerial Cargo/Utility System Program (AACUS) program are provided.
|
15 |
Collective Dynamics of Excitable Tree NetworksKhaledi Nasab, Ali 23 September 2019 (has links)
No description available.
|
16 |
A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat DynamicsSeemann, Martin 21 May 2019 (has links)
Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints.
An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*).
The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using Bézier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional.
Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation.
Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant. / Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche Suchräume, deren vollständige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, für die nur selten eine geschlossene mathematische Beschreibung existiert.
Bei der in dieser Arbeit betrachteten Anwendung auf Flächenflugzeuge kommen differentielle Randbedingungen und beschränkte Systemgrößen erschwerend hinzu.
Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die Suchraumkomplexität durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfüllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels Bézier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral überprüft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lässt.
Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstützen. Hierzu wird die aktuelle Zwischenlösung des Planers als Initialschätzung für ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme.
Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusätzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird.
Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen Berücksichtigung von Hindernissen erweitert.
Experimentelle Untersuchungen bestätigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung überlegen sind. Der erforderliche Rechenaufwand ist zwar beträchtlich, aber unter realistischen Bedingungen praktisch beherrschbar.
|
17 |
Distances in random treesLundblad, Jacob January 2023 (has links)
The Wiener index of a graph G is defined as the sum of the distances between all pairs of vertices in G. In this master thesis we introduce recursive trees, plane oriented recursive trees (PORTs) and simply generated trees. We then present results by Neininger, Janson, and Munsonius and Rüschendorf for the expectation and limiting distribution of the Wiener index of these families. For recursive trees and PORTs the results follow from analysing the recursive structure of the trees and the contraction method, while the results for simply generated trees is based on a limiting object, the continuum random tree.
|
18 |
Limite d'échelle de cartes aléatoires en genre quelconque / Scaling Limit of Arbitrary Genus Random MapsBettinelli, Jérémie 26 October 2011 (has links)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise. / In this work, we discuss the scaling limits of two particular classes of maps. In a first time, we address bipartite quadrangulations of fixed positive genus g and, in a second time, planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We view these objects as metric spaces by endowing their sets of vertices with the graph metric, suitably rescaled.We show that a map uniformly chosen among the maps having n faces in one of these two classes converges in distribution, at least along some subsequence, toward a limiting random metric space as n tends to infinity. This convergence holds in the sense of the Gromov--Hausdorff topology on compact metric spaces. We moreover have the following information on the limiting space. In the first case, it is almost surely a space of Hausdorff dimension 4 that is homeomorphic to the genus g surface. In the second case, it is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the unit disc of R^2. We also show that in the second case, if the length of the boundary is little-o of the square root of the number of faces, the same convergence holds without extraction and the limit is the same as for quadrangulations without boundary, that is the Brownian map.
|
19 |
Conditionnement de grands arbres aléatoires et configurations planes non-croisées / Large conditioned Galton-Watson trees and plane noncrossing configurationsKortchemski, Igor 17 December 2012 (has links)
Les limites d’échelle de grands arbres aléatoires jouent un rôle central dans cette thèse.Nous nous intéressons plus spécifiquement au comportement asymptotique de plusieurs fonctions codant des arbres de Galton-Watson conditionnés. Nous envisageons plusieurs types de conditionnements faisant intervenir différentes quantités telles que le nombre total de sommets ou le nombre total de feuilles, avec des lois de reproductions différentes.Lorsque la loi de reproduction est critique et appartient au domaine d’attraction d’uneloi stable, un phénomène d’universalité se produit : ces arbres ressemblent à un même arbre aléatoire continu, l’arbre de Lévy stable. En revanche, lorsque la criticalité est brisée, la communauté de physique théorique a remarqué que des phénomènes de condensation peuvent survenir, ce qui signifie qu’avec grande probabilité, un sommet de l’arbre a un degré macroscopique comparable à la taille totale de l’arbre. Une partie de cette thèse consiste à mieux comprendre ce phénomène de condensation. Finalement, nous étudions des configurations non croisées aléatoires, obtenues à partir d’un polygône régulier en traçant des diagonales qui ne s’intersectent pas intérieurement, et remarquons qu’elles sont étroitement reliées à des arbres de Galton-Watson conditionnés à avoir un nombre de feuilles fixé. En particulier, ce lien jette un nouveau pont entre les dissections uniformes et les arbres de Galton-Watson, ce qui permet d’obtenir d’intéressantes conséquences de nature combinatoire. / Scaling limits of large random trees play an important role in this thesis. We are more precisely interested in the asymptotic behavior of several functions coding conditioned Galton-Watson trees. We consider several types of conditioning, involving different quantities such as the total number of vertices or leaves, as well as several types of offspring distributions. When the offspring distribution is critical and belongs to the domainof attraction of a stable law, a universality phenomenon occurs: these trees look like the samecontinuous random tree, the so-called stable Lévy tree. However, when the offspring distributionis not critical, the theoretical physics community has noticed that condensation phenomenamay occur, meaning that with high probability there exists a unique vertex with macroscopicdegree comparable to the total size of the tree. The goal of one of our contributions is to graspa better understanding of this phenomenon. Last but not least, we study random non-crossingconfigurations consisting of diagonals of regular polygons, and notice that they are intimatelyrelated to Galton-Watson trees conditioned on having a fixed number of leaves. In particular,this link sheds new light on uniform dissections and allows us to obtain some interesting resultsof a combinatorial flavor.
|
20 |
Marches aléatoires et arbres de Galton-Watson / Ramdom Walk and Galton-Watson treesBouaziz, Aymen 09 December 2017 (has links)
Dans cette thèse nous nous sommes intéressés de trois types de problèmes : 1 -Existence et unicité d’une fonction harmonique strictement positive associée à une marche aléatoire inhomogène confinée dans un orthant. 2 -Etude de la convergence en loi des arbres de Galton Watson critiques conditionnés à avoir un nombre assez grand de noeuds protégés. 3 -Etude de la convergence en loi des arbres de Galton Watson conditionnés à avoir une génération anormalement grande. / In this thesis we are interested in three types of problems: 1-Existence and uniqueness of a positive harmonic function associated with an inhomogeneous random walk confined in an orthant. 2-Study of convergence in distribution of critical Galton Watson trees conditioned to have a large enoughnumber of protected nodes. 3-Study of the convergence in distribution of Galton Watson trees conditioned to have a large generation.
|
Page generated in 0.0869 seconds