• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 21
  • 15
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 131
  • 131
  • 131
  • 26
  • 21
  • 21
  • 21
  • 17
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Elastic Constants, Viscosities and Fluctuation Modes of Certain Bent-Core Nematic Liquid Crystals Studied by Dynamic Light Scattering and Magnetic Field Induced Orientational Distortion

Majumdar, Madhabi 23 November 2011 (has links)
No description available.
112

Mechanochemical polymerization – controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill

Borchardt, Lars, Grätz, Sven 04 April 2017 (has links) (PDF)
The mechanochemical polycondensation between a diamine and a dialdehyde constitutes a sustainable alternative to classical solvent-based polymerization reactions. This process not only allows for a higher conversion and a shorter reaction time as compared to standard solvent-based syntheses of this conjugated polymer, but the reaction can also be adjusted by the energy introduced via the ball mill.
113

Química da parte úmida em processo de fabricação de papel - interações em interfaces sólido-líquido. / Wet end chemistry in papermaking - interactions in solid-liquid interfaces.

Silva, Deusanilde de Jesus 02 March 2010 (has links)
Um polieletrólito catiônico (poliamina), com baixo peso molecular e elevada densidade de carga, normalmente aplicado como agente coagulante do lixo aniônico, foi usado para estudos de retenção e drenagem na fabricação de papel. O uso do carboximentil celulose de sódio para simulação do teor de lixo aniônico e seu efeito na retenção de cargas minerais foi uma característica importante para este trabalho. Pode ser observado que o aumento da dosagem do polímero catiônico tanto melhora a retenção de cargas minerais, avaliada pela turbidez do filtrado, quanto melhora a drenagem do sistema, avaliada pela velocidade de escoamento. Entretanto, elevadas dosagens deste polímero comprometeram os resultados destes parâmetros devido à inversão de carga do sistema. Pode também ser confirmado que forças de cisalhamento excessivas prejudicam a retenção de cargas minerais. Ademais, um polianfótero, com peso molecular e densidade de carga elevados, contendo grupos positivo (N-[3-(N,N-dimetilamino)propil]acrilamida), negativo (ácido metileno butanodióico) e nulo (acrilamida) na mesma cadeia, foi testado como agente de resistência a seco do papel. Todos os estudos em nível molecular sobre o comportamento do polianfótero em solução e o seu comportamento de adsorção sobre superfícies modelos carregadas, em diferentes condições de pH e de força iônica, foram importantes para explicar tanto dos fenômenos de adsorção, envolvendo fibras celulósicas e polianfótero, quanto o seu efeito na resistência mecânica do papel. Foi observado que a solubilidade do polímero aumenta à medida que o pH se distancia do seu ponto isoelétrico, pHPIE 7,3, e reduz para valores de pH próximos ao pHPIE. O tamanho das estruturas do polianfótero depende do pH do meio de dispersão. As características de tamanho do polianfótero tanto sob a forma de cadeias individuais ou quanto sob a forma de agregados, foram medidas através da técnica de espalhamento dinâmico de luz. As propriedades viscoelásticas das camadas adsorvidas e a quantidade de polímero adsorvida foram medidas através da técnica da balança microgravimétrica com dissipação de energia. Estas duas determinações, associadas às imagens no microscópio de força atômica, foram importantes para o entendimento dos resultados práticos do uso do polianfótero como agente de resistência a seco do papel. Maiores resultados de resistência do papel, avaliada através da resistência à tração, foram alcançados para valores de pH próximos ao ponto isoelétrico onde foram encontrados o seguinte: (1) maiores tamanhos para as estruturas do polímero em solução, (2) maior quantidade de massa nas camadas adsorvidas e (3) a formação de camadas mais viscoelásticas. O fenômeno de separação de fases, associado à mudança da solubilidade do polímero em solução devido ao balanço dos grupos positivos e negativos ionizados ao longo da faixa de pH estudada, foi considerado o principal aspecto para a variação em tamanho dos agregados. Embora este polímero tenha apresentado comportamento antipolieletrólito devido à expansão da sua cadeia e ao aumento da densidade de carga com o aumento da força iônica, considerando o efeito da força iônica para pH 4,3, o comportamento de adsorção do polianfótero foi avaliado como o comportamento de um polieletrólito monocarregado de alta densidade de carga. Maiores e menores quantidades de massas adsorvidas foram encontradas para valores intermediários e extremos de força iônica, respectivamente. As interações eletrostáticas foram consideradas as principais responsáveis pela adsorção do polímero sobre superfícies carregadas. Entretanto, a blindagem de cargas foi considerada a explicação para os baixos valores de massa adsorvida para valores mais elevados de força iônica. / A cationic polyelectrolyte (polyamine), with low molecular weight and high charge density, usually applied as anionic trash coagulant, was used for the retention and drainage studies in the papermaking. The use of sodium carboxymethyl cellulose to simulate the anionic trash content and its effect on the filler retention was an important feature of the work. It could be noted that the increasing of the cationic polymer dosage improves both the filler retention, evaluated by the turbidity of the filtrate, and the system drainage, evaluated by the flow speed. However, high dosages of this polymer compromised the results of these parameters due to the reversal of the system charge. It can also be confirmed that excessive shear forces affect the filler retention. Furthermore, a polyampholyte, with high molecular weight and charge density, containing positive (N-[3-(N,N- dimethylamino)propyl]acrylamide), negative (methylene butanedioic acid), and neutral (acrylamide) groups in the same chain, was tested as a dry strength agent. All of the studies at molecular level concerning to the polyampholyte behavior in the solution and its adsorption behavior on charged model surfaces at different conditions of pH and ionic strength, were important to explain both the adsorption phenomena, involving cellulosic fibers and polyampholyte, and its impact on the paper strength. It was observed that the polymer solubility increases as the pH moves away from its isoelectric point, pHIEP 7.3, and decreases when the pH approaches close to pHIEP. The sizes of the structures of the polyampholytes depend on the pH of the dispersion medium. Also the size characteristics of polyampholyte, both in individual and aggregated forms, were measured by dynamic light scattering technique. The viscoelastic properties of adsorbed layers, as well as the amount of the adsorbed polymer, were measured by quartz crystal microbalance technique with energy dissipation. These two measurements, associated with the atomic force microscopy images, were important to understand the practical results of polyampholyte usage as a dry strength agent. Best results of paper strength, evaluated by paper strength index, were achieved at pH close to the isoelectric point on which one were found the following features: (1) larger sizes of the polymer structures in solution, (2) higher amount of mass in the adsorbed layers, and (3) the formation of more viscoelastic layers. The phase separation phenomenon, associated with the change in the solubility of the polymer due to the balance of the positive and negative groups throughout the studied pH range, was considered the main aspect for the variation in size of the aggregates. Although this polymer shows antipolyelectrolyte behavior due to the expansion of the its chain and the increasing in charge density with the ionic strength, considering the effect of ionic strength at pH 4.3, the adsorption behavior of polyampholyte was evaluated as a monocharged polyelectrolyte behavior with high charge density. Major and minor amounts of adsorbed masses were found for intermediates and extremes values of ionic strength, respectively. The electrostatic interactions were considered the main cause of the adsorption on charged surfaces. However, the electrostatic screening was considered the explanation for the low values of adsorbed mass at higher values of ionic strength.
114

Contributions à l’étude de la thermo diffusion de mélanges binaires en conditions de réservoirs / Contribution to the study of thermosdiffusion phenomena on binary mixtures in reservoir conditions.

Giraudet, Cédric Michel Marius 30 March 2015 (has links)
La thermodiffusion, également appelé effet Soret, décrit le couplage entre les gradients de température et les flux massiques qui en résultent. Ce phénomène intervient dans de nombreux processus naturels et applications industrielles. En particulier, les réservoirs pétroliers sont sujets à ce phénomène impliquant des fluides multi constituants confinés dans une matrice poreuse et soumis à un gradient de température. Néanmoins, malgré beaucoup des progrès, il existe relativement peu de mesures fiables de ce phénomène et sa modélisation reste largement un problème ouvert. L’objectif principal de cette thèse s’inscrit dans ce cadre, à savoir développer une approche expérimental permettant de fournir des données de références sur la thermodiffusion notamment dans l’optique de quantifier l’effet de la pression sur cette dernière. Ainsi, durant cette thèse, nous avons développé une cellule de thermodiffusion en milieu libre qui permet d’étudier par shadowgraphie les fluctuations de non équilibre induites par effet Soret. L’appareil de mesure a ensuite été utilisé pour étudier deux mélanges binaires représentatifs de fluides pétroliers, à savoir le mélange équimassique tétraline/dodécane (en phase liquide) et le mélange dioxyde de carbone/méthane (en phases gaz et supercritique). En complément, des simulations de dynamique moléculaire ont été réalisées sur le mélange dioxyde de carbone/méthane. Par analyse dynamique des images de shadowgraphie nous avons pu déterminer les coefficients de diffusion et Soret en fonction de la pression pour le mélange tétraline/dodécane. Aux incertitudes près, nous observons une décroissance linéaire avec la pression pour ces coefficients. De plus nous avons observé l’effet du confinement de la cellule sur les fluctuations en très bon accord avec la théorie et les simulations. Pour le mélange dioxyde de carbone/méthane l’analyse dynamique a montré une cinétique difficilement accessible de par les limites physiques et informatiques du dispositif expérimental utilisé. L’analyse statique montre, quant à lui, une croissance rapide de l’amplitude des fluctuations avec la pression jusqu’à un seuil au-delà duquel elle décroît. Sur ce mélange les simulations de dynamique moléculaire ont montré un bon accord avec les prédictions théoriques. / Thermodiffusion, also called the Soret effect, describes the coupling between temperature gradient and resulting fluxes. This phenomenon is involved in a number of natural and industrial processes. In particular, multi components fluids in petroleum reservoirs are subjected to this phenomenon because of the geo-thermal gradient. Nevertheless, in spite of a lot of advances, there are few available data of this phenomenon and the establishment of a theoretical model, able to give a quantitative estimation of these transport coefficients whatever molecules in presence, is still an open question. The principal aim of this thesis is to develop an experimental approach allowing providing reference data on thermodiffusion as a function of the pressure. During this thesis, we developed a high pressure thermodiffusion cell in free medium, enabling us to study concentration non-equilibrium fluctuations induced by the Soret effect by means of shadowgraph optical technique. With this setup we investigated two binary mixtures representatives of petroleum fluids; namely the equimassic tetralin/dodecane mixture in liquid phase and the carbon dioxide/methane mixture in gaseous and super critical state. Furthermore, molecular dynamic simulations on the second mixture were performed. Using a dynamic image analysis, we have measured molecular diffusion and Soret coefficient for the tetralin/dodecane mixture. Within experimental uncertainties, we observed a linear decrease of these coefficients with the pressure. Furthermore, we were able to observe the effect of confinement (finite size effect induced by cell vertical boundary conditions) on fluctuation dynamics, in good agreement with calculations and simulations based on hydrodynamic fluctuation theory on similar solutal Rayleigh number. Concerning the carbon dioxide/methane mixture, the dynamic analysis revealed a kinetic too fast for our experimental apparatus. Conversely, static analysis revealed a rapid increase of the non-equilibrium fluctuation magnitude as a function of the pressure up to a threshold beyond which it decreases. On this mixture, performed molecular dynamic simulations provided results in good agreement with expected theoretical behaviour.
115

Estudos das intera??es de quitosana/CTAB/C12E8

Santos, Zilvam Melo dos 22 February 2013 (has links)
Made available in DSpace on 2014-12-17T15:42:26Z (GMT). No. of bitstreams: 1 ZilvamMS_TESE_reduzido.pdf: 9108618 bytes, checksum: 613dad3fd1a359dce84e2af73b067934 (MD5) Previous issue date: 2013-02-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work / As intera??es tensoativo-pol?mero s?o amplamente usadas quando s?o necess?rias propriedades reol?gicas para aplica??es espec?ficas, como a produ??o de fluidos para explora??o do petr?leo. Estudos das intera??es de quitosana com tensoativos cati?nicos tem chamado aten??o por serem capazes de causar mudan?as nos par?metros reol?gicos dos sistemas abrindo espa?o para novas aplica??es. A quitosana comercial representa uma alternativa interessante para estes sistemas, uma vez que ela ? obtida a partir da desacetila??o parcial da quitina: os s?tos acetilados residuais podem, ent?o, ser usados para as intera??es pol?mero-tensoativo. Tensoativos alquil etoxilados podem ser utilizados neste sistema, pois estes tensoativos n?o i?nicos podem interagir com s?tios hidrof?bicos da quitosana, modificando a reologia de solu??es ou emuls?es resultantes, os quais dependem do fen?meno de relaxa??o ocorrendo nestes sistemas. Neste trabalho, primeiramente, foram preparadas emuls?es inversas de solu??o de quitosana como fase dispersa e cicloexano como fase cont?nua usando CTAB como tensoativo. A an?lise reol?gica destas emuls?es mostrou pronunciado comportamento pseudopl?stico. Esta pseudoplasticidade foi atribu?da ? intera??o por la?os loops de cadeias de quitosana. Ensaios de flu?ncia tamb?m foram executados e deram maior suporte a estas discuss?es. Em seguida, a fim de se obter maiores informa??es sobre as intera??es da quitosana com tensoativos n?o i?nicos, solu??es de quitosana foram misturadas com C12E8 e levadas ?s an?lises reol?gica e de espalhamento din?mico de luz. Os sistemas tiveram elevado comportamento pseudopl?stico, o qual se tornava menos evidente, quando o teor de tensoativo foi aumentado. Equa??es de Arrhenius e de KWW foram usadas para obter par?metros de energia de ativa??o aparente e de distribui??o da taxa de relaxa??o, respectivamente, aos quais foram relacionados em fun??o do teor de tensoativo e da temperatura, usados neste trabalho
116

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
117

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
118

A study of type-3 copper proteins from arthropods

Baird, Sharon January 2007 (has links)
Arthropod hemocyanin and phenoloxidase are members of a group of proteins called the Type-3 copper oxygen-binding proteins, both possessing a highly conserved oxygen-binding site containing two copper atoms each coordinated by three histidine residues (Decker and Tuczek, 2000). Despite similarities in their active site, these proteins have very different physiological functions. Phenoloxidase possesses both tyrosinase and o-diphenoloxidase activity, and is predominantly involved in reactions which protect insects from infection (Kopàcek et al., 1995). Hemocyanin is a large multi-subunit protein with a primary function as a respiratory protein, reversibly binding and transporting molecular O2 (Decker and Rimke, 1998; Decker and Tuczek, 2000). Recently, it has been demonstrated in vitro that arthropod hemocyanin possesses an inducible phenoloxidase activity when incubated with denaturants, detergents, phospholipids or proteolytic enzymes. This activity appears to be restricted to only a few subunit types, and it has been hypothesised that it may be accompanied by conformational change which opens the active site increasing access for larger phenolic substrates (Decker and Jaenicke, 2004; Decker et al., 2001; Decker and Tuczek, 2000). This possibly suggests a dual role of hemocyanin in arthropods. The presented thesis deals with two distinct aims. The first was to isolate and sequence a phenoloxidase gene from the insect Spodoptera littoralis (Egyptian Cottonleaf Worm). Despite efforts, progress was hindered by a number of experimental problems which are outlined within the relevant chapters. The second aim was to characterise the mode of SDS induced phenoloxidase activity in arthropod hemocyanin from the ancient chelicerates Limulus polyphemus (horseshoe crab) and Eurypelma californicum (tarantula) and the more modern chelicerate Pandinus imperator (scorpion), using a number of biophysical techniques. The results indicated that the SDS induced phenoloxidase activity is associated with localised tertiary and secondary conformational changes in hemocyanin, most likely in the vicinity of the dicopper centre, thus enhancing access for larger phenolic substrates. Experiments indicate that copper remains associated with the protein during these structural changes; however the nature of the association is unclear. SDS concentrations approximating the CMC appeared critical in causing the necessary structural changes required for a significant increase in the detectable phenoloxidase activity to be exhibited.
119

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
120

Raman spectroscopic study and dynamic properties of chalcogenide glasses and liquids / Φασματοσκοπική μελέτη Raman και δυναμικές ιδιότητες χαλκογονούχων υάλων και υγρών

Kostadinova, Ofeliya 19 January 2011 (has links)
Chalcogenide glasses (ChGs) are produced by alloying together a “chalcogen” element” (S, Se or Te) with other elements, generally from group V (Sb, As) or group IV (Ge, Si) to form covalently bonded solids. A variety of stable non-crystalline materials can be prepared in bulk, fiber, and thin film forms using melt-quenching, vacuum deposition, and other less common techniques. Being amorphous semiconductors, ChGs exhibit a variety of photo-induced phenomena when irradiated with proper light and therefore find a wide range of technological applications (optical data storage, telecommunications, IR optics, etc). As research in this field is strongly driven by the needs of high-tech industry, physical properties related to the applications are more systematically investigated than the atomic structure, which is ultimately related to the macroscopic properties. A shortcoming of not having yet established microstructure-properties relations in ChGs is the lack of a strategic design of new materials for specific applications. The present study is a systematic investigation of properties for various families of ChGs using experimental techniques that probe structure (near infrared Raman scattering, x-ray and neutron diffraction, EXAFS), dynamics (IR-Photon correlation spectroscopy), thermal properties (differential scanning calorimetry) and glass morphology (scanning electron microscopy). Particular emphasis is given on binary and pseudo-ternary ChGs, which are the basis of more complex multi-component glasses, such as As-Se, Sb-Se, As-Te, Ge-S, Ge-S-AgI, As-Se-AgI, As-Se-Ag, As-S-AgI, As-S-Ag etc. over a wide glass composition range. The binary systems are known for their significant optical properties while the Ag-doped glasses belong to the class of superionic conductors. Although some of these glass-forming systems have been extensively studied in the literature, several details concerning the atomic arrangement are still not fully understood, partly due to that some of these glasses are phase separated at the microscale; a fact that is usually overlooked in related studies. In the present study, using high-resolution off-resonant Raman conditions and a more elaborate analysis of the Raman spectra, in conjunction with thermal and morphological data, we have been able to obtain a better understanding of atomic structure and to advance structure-properties relations for both the homogeneous and phase separated glasses. / Μια κατηγορία υαλωδών υλικών, γνωστή ως χαλκογονούχες ύαλοι αρχίζει να κερδίζει σημαντικό έδαφος στον τομέα των εφαρμογών λόγω των φωτονικών ιδιοτήτων που διαθέτουν. Ως χαλκογονούχες ύαλοι θεωρούνται οι υαλώδεις ενώσεις στις οποίες ένα τουλάχιστον περιέχει ένα από τα στοιχεία χαλκογόνων S, Se, και Te. Η ανάμιξη των στοιχείων αυτών με στοιχεία όπως Sb, As, Ge, Si, κλ.π. οδηγεί στο σχηματισμό σταθερών ομοιοπολικών υαλωδών ενώσεων. Το γεγονός ότι οι χαλκογονούχες ύαλοι είναι άμορφοι ημιαγωγοί έχει ως αποτέλεσμα την εμφάνιση πλήθους φωτο-επαγόμενων φαινομένων όταν οι ενώσεις αυτές ακτινοβοληθούν με φως κατάλληλου μήκους κύματος (συγκρίσιμο με το ενεργειακό τους χάσμα). Οι φωτο-επαγόμενες αλλαγές απορρέουν από τις αλλαγές οι οποίες επέρχονται στην ατομική δομή του υλικού (φωτο-δομικές αλλαγές). Τα φωτο-επαγόμενα φαινόμενα είναι εκμεταλλεύσιμα σε πλήθος τεχνολογικών εφαρμογών, για παράδειγμα στην οπτική αποθήκευση πληροφορίας (DVD), σε οπτικά που λειτουργούν στο υπέρυθρο, στις τηλεπικοινωνίες κλπ. Καθώς η έρευνα πάνω στο εν λόγω επιστημονικό πεδίο καθορίζεται σε μεγάλο βαθμό από τις ανάγκες για βιώσιμες τεχνολογικές εφαρμογές, οι φυσικές ιδιότητες, οι οποίες σχετίζονται άμεσα με τις εφαρμογές, έχουν μελετηθεί εντατικότερα και πιο συστηματικά από την ατομική δομή η οποία είναι κατά βάση υπεύθυνη για τα φωτο-επαγόμενα φαινόμενα. Αυτό έχει ως μειονέκτημα την απουσία συσχετισμών μεταξύ μικροσκοπικών και μακροσκοπικών ιδιοτήτων με αποτέλεσμα την απουσία στρατηγικού σχεδιασμού νέων λειτουργικών υλικών με τις επιθυμητές ιδιότητες. Η παρούσα διατριβή περιλαμβάνει μια συστηματική μελέτη διαφόρων οικογενειών χαλκογονούχων υάλων με τη χρήση πειραματικών τεχνικών οι οποίες διερευνούν την ατομική δομή (σκέδαση Raman, περίθλαση ακτίνων-X και νετρονίων, EXAFS), τις θερμικές ιδιότητες (διαφορική θερμιδομετρία σάρωσης) και την μορφολογία των υάλων (ηλεκτρονική μικροσκοπία σάρωσης). Ιδιαίτερη έμφαση δόθηκε σε δυαδικά και ψευδο-δυαδικά συστήματα χαλκογονούχων υάλων τα οποία συμπεριλαμβάνουν As-Se, Sb-Se, As-Te, Ge-S, Ge-S-AgI, As-Se-AgI, As-Se-Ag, As-S-AgI, As-S-Ag κλπ. για μεγάλο εύρος συστάσεων της κάθε οικογένειας. Τα δυαδικά συστήματα είναι γνωστά για τις εξαίρετες οπτικές τους ιδιότητες ενώ οι ύαλοι με προσμίξεις Αργύρου ανήκουν στην κατηγορία των υπεριοντικών υάλων με αρκετά υψηλές ιοντικές αγωγιμότητες που χαρακτηρίζονται από μικροσκοπικό διαχωρισμό φάσεων σε συγκεκριμένες συγκεντρώσεις του Αργύρου. Παρά το γεγονός ότι ορισμένα από τα προαναφερθέντα άμορφα υλικά έχουν κατ’ επανάληψη μελετηθεί στο παρελθόν, ακριβείς πληροφορίες σχετικά με την ατομική δομή τους δεν είναι διαθέσιμες, εν μέρει εξ’ αιτίας της ελλιπούς πειραματικής προσέγγισης και εν μέρει λόγω του μικροσκοπικού διαχωρισμού φάσεων που χαρακτηρίζει τις υάλους με πρόσμιξη Αργύρου, γεγονός το οποίο συχνά αμελείται σε προγενέστερες μελέτες. Στην παρούσα διατριβή, χρησιμοποιώντας τη φασματοσκοπία σκέδασης Raman υψηλής ανάλυσης και μακριά από συνθήκες συντονισμού, σε συνδυασμό με θερμικά και μορφολογικά δεδομένα των υάλων, κατέστη δυνατό να αποκτηθεί μια πιο σφαιρική γνώσης σχετικά με την ατομικής κλίμακας δομή των υάλων και να προαχθούν συσχετισμοί δομής-ιδιοτήτων τόσο για ομοιογενή όσο και για ανομοιογενείς υάλους.

Page generated in 0.109 seconds