Spelling suggestions: "subject:" electrondensity"" "subject:" electronicdensity""
71 |
Charge Density Distribution in Low-Valent TetrelsKratzert, Daniel 09 April 2013 (has links)
No description available.
|
72 |
Investigations of electropositive and electronegative RF dischargesBryant, Paul M. January 2000 (has links)
No description available.
|
73 |
Ultra high resolution crystallography of small molecules and proteins / Cristallographie des petites molécules et des protéines à très haute résolutionAhmed, Maqsood 30 May 2012 (has links)
La cristallographie des rayons-X à ultra-haute résolution permet d'analyser la distribution de charge des molécules et d'étudier les interactions intermoléculaires avec précision. Des études structurales de plusieurs composés à base de thiophène ont été menées à bien, et le phénomène de désordre a été discuté. Des analyses expérimentales et théoriques de la densité de charge de deux molécules importantes ont été réalisées en utilisant le modèle d'atome multipolaire. Un nouveau modèle d'atomes virtuels est également testé : il permet le calcul rapide des propriétés électrostatiques. La liaison hydrogène avec l'oxygène comme accepteur est étudiée par l'analyse extensive de plus de 500.000 structures cristallines. Les résultats de stéréochimie sont comparés avec la densité électronique des atomes d'oxygène dans différents environnement chimiques, ce qui permet de montrer la dépendance directionnelle des liaisons hydrogène et des formes et orientations des paires d'électrons libres. Finalement, il est montré qu'en l'absence de données de diffraction des rayons X à haute résolution, le principe de transférabilité des paramètres de la densité électronique peut être exploité pour étudier les propriétés électrostatiques et les interactions intermoléculaires. Ce principe a été utilisé avec succès sur une petite molécule à base de thiophène et sur la protéine FAD-dépendante Cholestérol oxydase / Ultra high resolution X-ray crystallography allows for analyzing the charge distribution in the molecules and provides methods to study the intermolecular interactions at a deeper level. Structural studies of several thiophene based compounds have been carried out and the phenomenon of disorder has been discussed. Experimental and theoretical charge density analysis of two important molecules was performed using a multipolar atom model. A new virtual atom model is also tested which allows for a rapid calculation of the electrostatic properties. The hydrogen bonding with oxygen atom acceptor is studied through an extensive survey of more than 500,000 crystal structures. The stereo chemical results are compared with the electron density of the oxygen atoms in different chemical environments which give conclusive evidences for the dependence of directionality of hydrogen bonds on the shape and orientation of the electrons lone pairs. Finally, it has been shown that how in the absence of high resolution X-rays data, principle of transferability of electron density parameters between molecules can be used to study the electrostatic properties and the intermolecular interactions. This principle has been successfully applied to a small thiophene based molecule and the large FAD binding protein Cholesterol oxidase
|
74 |
On the Formation and Structure of the Ionosphere of TitanÅgren, Karin January 2012 (has links)
We present results on the ionospheric structure around Titan observed during numerous deep (<1000 km) flybys by the Cassini spacecraft. Our results are based on measurements by the radio and plasma wave science instrument, in particular the Langmuir probe. In addition, data from the magnetometer and electron spectrometer have contributed. The ionosphere of Titan is created when the atmosphere of the moon becomes ionised. There are several mechanisms that contribute to this, the most important of which are considered to be photoionisation by EUV from the Sun with associated photoelectron ionisation, and particle impact ionisation by electrons and ions from Saturn’s corotating magnetosphere. We investigate the influence of the solar zenith angle on the electron number density at the ionospheric peak. The results show on average four times more plasma on the dayside compared to the nightside, with typical densities of 2500 – 3500 cm-3 and 400 – 1000 cm-3, respectively. In a complementary study, we make a case study of a nightside flyby and show that the altitude structure of the deep ionosphere is reproducible by a simple electron impact ionisation model. Taken together, this leads to the conclusion that solar photons are the main ionisation source of the dayside ionosphere. However, magnetospheric particle precipitation also contributes and can explain the electron densities seen on the nightside. As Titan does not exhibit any large intrinsic magnetic field, the fact that it is embedded in the magnetosphere of Saturn means that the Kronian field drapes around the moon and gives rise to an induced magnetosphere. We show that there are currents of the order of 10 – 100 nA m-2 flowing in the ionosphere of the moon. Associated with the currents are perpendicular electric fields ranging from 0.5 to 3 µV m-1. Finally, we investigate measurements obtained during T70, the deepest Titan flyby performed to date. We show that there is a substantial amount of negative ions present below an altitude of 900 km. This confirms previous result by the electron spectrometer, showing negative ions at higher altitudes in Titan’s ionosphere.
|
75 |
Measurement Of Nonuniform Magnetized Argon Plasma Discharge ParametersDagtekin, Ebru 01 December 2006 (has links) (PDF)
Effects of a magnetic field on the double-probe technique are studied experimentally by means of symmetric floating computer controlled fast double probes in low and intermediate pressure plasmas. In addition, the effects of the magnetic field on the electron temperature, electron density, and electric field have been investigated. As it is expected, when there is no magnetic field, properties of the discharge plasma are best described by Langmuir theory. Whereas, when there&rsquo / s a magnetic field of sufficient strength Schottky&rsquo / s theory of ambipolar diffusion applies.
|
76 |
Characterisation of the ionosphere over the South Atlantic Anomaly by using a ship-based dual-frequency GPS receiverVan der Merwe, Stefanus Jansen 05 December 2011 (has links)
The ionosphere is a layer of ionised gas in the upper layers of the atmosphere around the Earth that plays a critical role in satellite communication, military communication and space science. The influence that the ionosphere has on communication systems can be quantified if the distribution of the electron density within the ionosphere is known. Several methods and instruments to determine the distribution of electron density are currently being used: satellites, ionosondes, incoherent scatter radars and computerised ionospheric tomography based on dual-frequency GPS signals. The present study investigates a novel way of using GPS receivers on mobile platforms to achieve near real-time ionospheric characterisation over locations beyond the reach of land-based ionospheric characterisation methods. GPS observations were collected, pre-processed and inverted by means of tomography to generate three-dimensional electron density maps. These electron density maps were analysed and verified. The viability of using observations from a mobile GPS receiver for ionospheric tomography was investigated. The algorithms were verified by means of a model ionosphere and a simulated GPS receiver. Furthermore, electron density maps generated from GPS observables from a mobile receiver were verified against ionosonde-derived electron density profiles, static land-based GPS receivers and known high-frequency propagation paths using propagation path prediction. The results were evaluated and the conclusion was that, although some aspects still have to be addressed, a dual-frequency GPS receiver on a ship can provide useful ionospheric characterisation in areas which are otherwise poorly or not covered by land-based receivers. / Dissertation (MEng)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted
|
77 |
Design of Optical Measurements for Electrothermal Plasma DischargesHamer, Matthew David 23 June 2014 (has links)
Ablation controlled electrothermal (ET) plasma discharge devices consist of a small diameter capillary through which a large amount of energy is discharged. The high energy in the discharge ablates an inner sleeve material, ionizes the material, and a high energy-density plasma jet accelerates out the open end. ET devices can find applications in internal combustion engines, Tokamak fusion fueling and stabilization, hypervelocity launchers, and propulsion. The ballistic properties of an ET device are highly dependent on the propellant and ablated material. A useful noninvasive technique to characterize a propellant in these types of devices is spectroscopy. The purpose of this study is to design and conduct experiments on the ET facility called PIPE to verify results and assumptions in the ETFLOW simulation code as well as resolve data collection issues such as equipment triggering as spectrometer saturation. Experiments are carried out using an Ocean Optics LIBS2500plus high resolution spectrometer and a Photron FASTCAM SA4 high speed camera. Electron plasma temperatures are estimated using copper peaks in the UV region with the relative line intensity method, and electron plasma density is estimated by measuring the full width at half maximum (FWHM) of the stark broadened H--β line at 486 nm. Electron temperatures between 0.19 eV and 0.49 eV, and electron densities between 4.68*1022 m-3 and 5.75*10²² m⁻³ were measured in the expanding plasma jet about an inch outside the source with values as expected for this region. Velocity measurements of PIPE match well with simulations at around 5333 m/s. This study concluded that the assumption that the propellant Lexan is completely dissociated is a valid assumption, and that the ETFLOW results for electron temperature, density, and bulk plasma velocity match experimental values. / Master of Science
|
78 |
Méthode efficace d'assignation de tissus humains par tomodensitométrie à double énergieDi Salvio, Anthony 03 1900 (has links)
Pour analyser les images en tomodensitométrie, une méthode stœchiométrique est gé-
néralement utilisée. Une courbe relie les unités Hounsfield d’une image à la densité
électronique du milieu. La tomodensitométrie à double énergie permet d’obtenir des
informations supplémentaires sur ces images. Une méthode stœchiométrique a été dé-
veloppée pour permettre de déterminer les valeurs de densité électronique et de numéro
atomique effectif à partir d’une paire d’images d’un tomodensitomètre à double énergie.
Le but de cette recherche est de développer une nouvelle méthode d’identification de
tissus en utilisant ces paramètres extraits en tomodensitométrie à double énergie. Cette
nouvelle méthode est comparée avec la méthode standard de tomodensitométrie à simple
énergie. Par ailleurs, l’impact dosimétrique de bien identifier un tissu est déterminé.
Des simulations Monte Carlo permettent d’utiliser des fantômes numériques dont tous
les paramètres sont connus. Les différents fantômes utilisés permettent d’étalonner les
méthodes stœchiométriques, de comparer la polyvalence et la robustesse des méthodes
d’identification de tissus double énergie et simple énergie, ainsi que de comparer les
distributions de dose dans des fantômes uniformes de mêmes densités, mais de compo-
sitions différentes.
La méthode utilisant la tomodensitométrie à double énergie fournit des valeurs de densi-
tés électroniques plus exactes, quelles que soient les conditions étudiées. Cette méthode
s’avère également plus robuste aux variations de densité des tissus. L’impact dosimé-
trique d’une bonne identification de tissus devient important pour des traitements aux
énergies plus faibles, donc aux énergies d’imagerie et de curiethérapie. / A stoichiometric method is usually used to analyze computed tomography images. A
curve links the Hounsfield units on the images to the electron density in a given me-
dium. Dual-energy computed tomography gives additional information on a scan. A stoi-
chiometric method was developed to acquire both electron density and effective atomic
number from a pair of images.
The aim of this research is to develop a new method to identify tissues using the parame-
ters extracted from dual-energy computed tomography. This new method is compared to
the standard single-energy computed tomography segmentation method. Furthermore,
the effect of correctly assigning tissues on dose distribution is studied.
Monte Carlo simulations allow the use of perfectly known numerical phantoms. Dif-
ferent phantoms allowed the calibration of the stoichiometric methods, the comparison
of the versatility and the robustness of the dual-energy and the single-energy methods,
and the comparison of dose distribution in phantoms of same densities, but of different
compositions.
The dual-energy identification method gives more accurate values of electron density in
any studied condition. This method is also more robust to tissues of variable density. The
dosimetric impact of an accurate identification becomes more important for treatments
using lower energy photons, such as imaging energies and brachytherapy.
|
79 |
Simulations of electron transport in GaN devicesArabshahi, Hadi January 2002 (has links)
This thesis deals with the development and application of Monte Carlo simulations to study electron transport in bulk GaN in the wurtzite crystal structure and the properties of field effect transistors made from the material. There is a particular emphasis on transport in the high electric field regime and transistors operating at high voltages. The simulation model includes five sets of non-parabolic conduction band valleys which can be occupied by electrons during high field transport. The effects on electron transport of impurities and the relevant phonon scattering mechanisms have been considered. Results for electron transport at both low and high electric field are presented and compared with the properties of GaN in the zincblende structure, of other group-III nitride semiconductors, and of GaAs. The dependence of the transport properties on the material parameters is discussed and also with regard to the temperature, donor concentration and electric field magnitude and direction. The transport properties of electrons in wurtzite GaN n+-i(n)-n+ diodes are also explored, including the effect of the upper valleys and the temperature on hot electron transport. Simulations have also been carried out to model the steady-state and transient properties of GaN MESFETs that have recently been the subject of experimental study. It has been suggested that traps have a substantial effect on the performance of GaN field effect transistors and we have developed a model of a device with traps to investigate this suggestion. The model includes the simulation of the capture and release of electrons by traps whose charge has a direct effect on the current flowing through the transistor terminals. The influence of temperature and light on the occupancy of the traps and the /- V characteristics are considered. It is concluded that traps are likely to play a substantial role in the behaviour of GaN field effect transistors. Further simulations were performed to model electron transport in AlGaN/GaN hetero-junction FETs. So called HFET structures with a 78 nm Alo.2Gao.8N pseudomorphically strained layer have been simulated, with the inclusion of spontaneous and piezoelectric polarization effects in the strained layer. The polarization effects are shown to not only increase the current density, but also improve the electron transport by inducing a higher electron density close to the positive charge sheet that occurs in the channel.
|
80 |
Efeitos de matriz nas propriedades do plasma LIBS para quantificação de carbono / Matrix effects in the LIBS plasma properties for carbon quantificationFranco, Marco Aurélio de Menezes 26 June 2017 (has links)
Nos últimos 20 anos, a espectroscopia de emissão ótica com plasma induzido a laser (LIBS) tem se tornado uma das mais promissoras ferramentas em química analítica, cujas aplicações são destinadas às análises multi-elementares em amostras nos estados sólido, líquido e gasoso. Suas aplicações são as mais diversas, pois sua instrumentação é relativamente simples e pode ser portátil. Em especial, a LIBS apresenta grande potencial de uso na agricultura, com diversas publicações que exploram, principalmente, a concentração de carbono em solos. Entretanto, a construção de modelos gerais de calibração é uma das maiores dificuldades da técnica, pois ela está suscetível aos efeitos de matriz que adicionam comportamentos não-lineares às intensidades das emissões. Com intuito de compreender quais são as principais causas dessa dependência, este trabalho avaliou relações entre propriedades físicas do plasma LIBS e as inclinações das curvas de calibração para cinco emissões de carbono em amostras sintéticas de diferentes potenciais de ionização, sendo elas KCl e H3BO3 com 1% de CuSO4 e concentrações entre 0 e 10 % de carbono. Constatou-se que temperatura e densidade de elétrons dependem inversamente da concentração de carbono nas amostras, o que provavelmente está associado às taxas de ablação de material da amostra e recombinação no interior do plasma. Ademais, esses parâmetros em plasmas originados das amostras de KCl + CuSO4 são maiores do que para a matriz de H3BO3 + CuSO4, além de que apenas plasmas originados da primeira matriz satisfizeram o critério de McWhirter para C I, Cu I e Cu II em todas as concentrações de carbono, indicando que eles devem apresentar condições de equilíbrio termodiâmico local. O mesmo não foi obtido para o caso da matriz de H3BO3 + CuSO4, o que pode explicar suas elevadas incertezas nos valores da temperatura e densidade de elétrons. Verificou-se ainda que as inclinações das curvas de calibração para o carbono foram maiores para o caso da matriz com elementos majoritários de menor potencial de ionização e que isso está diretamente relacionado às propriedades intrínsecas dos plasmas originados, o que corrobora a hipótese deste trabalho. Além disso, cálculos de correlação entre a área do pico de carbono em 247,89 nm e cada ponto dos espectros LIBS mostraram que a emissão de Cu II em 224,72 nm linearizou as curvas de calibração, minimizando os efeitos de matriz. Por fim, este trabalho contribuiu tanto com avanços no conhecimento até então existente a respeito dos efeitos de matriz quanto com um eficiente conjunto de técnicas analíticas para espectros, cujo potencial de aplicação é enorme. / In the last 20 years, laser-induced breakdown spectroscopy (LIBS) has been one of the main tools in analytical chemistry, whose applications are destinated to multi-elementar analysis in solid, liquid or gaseous samples. Its use is diverse, since its instrumentation is relatively simple and can be portable. In particular, LIBS has a great potential for use in agriculture, with many publications that explore mainly the carbon concentration in soils. However, the construction of general calibration models is one of the greatest difficulties of the technique, since it is susceptible to matrix effects that add non-linear behaviors to the emission intensities. In order to understand the main causes of this dependence, this study evaluated the relationships between physical properties of the LIBS plasma and the slope of the calibration curves for carbon emissions in synthetic samples with different ionization potentials. Those samples were made of KCl and H3BO3 with 1% of CuSO4 and carbon concentrations ranging from 0 to 10%. It was found that the plasma temperature and electron density are inversely proportional to the carbon concentration in the samples, which is probably associated with rates of sample ablation and recombination within the plasma. In addition, these parameters in plasmas originating from the samples of KCl + CuSO4 are larger than those originating from the matrix of H3BO3 + CuSO4 at all carbon concentrations, indicating that the first matrix must be in local thermodynamics equilibrium. However, similar results were not found for the other matrix which may explain its high uncertainties in the values of temperature and electron density. It was verified that the slope of the carbon calibration curves were higher for the matrix with elements of low ionization potential than for the other matrix and that this is directly related to the intrinsic properties the plasmas originated, which corroborates the hypothesis of this study. Furthermore, the analysis of correlation between the carbon peak area at 247.89 nm and each point of the LIBS spectra have shown that the Cu II emission at 224.72 nm linearized the calibration curves, minimizing the matrix effects. Finally, this study contributed with advances in the knowledge about matrix effects and with an efficient set of analytical tools for spectra whose application potential is huge.
|
Page generated in 0.061 seconds