• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2804
  • 1045
  • 507
  • 265
  • 221
  • 130
  • 71
  • 71
  • 33
  • 15
  • 15
  • 13
  • 12
  • 11
  • 11
  • Tagged with
  • 6621
  • 2408
  • 1756
  • 1003
  • 997
  • 904
  • 697
  • 694
  • 693
  • 640
  • 609
  • 580
  • 564
  • 531
  • 506
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

isoSTED microscopy for live cell imaging

Siegmund, René 22 February 2019 (has links)
No description available.
322

Three-Dimensional Microscopy by Laser Scanning and Multi-Wavelength Digital Holography

Khmaladze, Alexander 12 September 2008 (has links)
This dissertation presents techniques of three-dimensional microscopy. First, an economical method of microscopic image formation that employs a raster-scanning laser beam focused on a sample, while non-imaging detector receives the scattered light is presented. The images produced by this method are analogous to the scanning electron microscopy with visible effects of shadowing and reflection. Compared to a conventional wide-field imaging system, the system allows for a greater flexibility, as the variety of optical detectors, such as PMT and position-sensitive quadrant photodiode can be used to acquire images. The system demonstrates a simple, low-cost method of achieving the resolution on the order of a micron. A further gain in terms of resolution and the depth of focus by using Bessel rather than Gaussian beams is discussed. Then, a phase-imaging technique to quantitatively study the three-dimensional structure of reflective and transmissive microscopic samples is presented. The method, based on the simultaneous dual-wavelength digital holography, allows for higher axial range at which the unambiguous phase imaging can be performed. The technique is capable of nanometer axial resolution. The noise level, which increases as a result of using two wavelengths, is then reduced to the level of a single wavelength. The method compares favorably to software unwrapping, as the technique does not produce non-existent phase steps. Curvature mismatch between the reference and object beams is numerically compensated. The 3D images of porous coal samples and SKOV-3 ovarian cancer cells are presented.
323

Next generation of multifunctional scanning probes

Moon, Jong Seok 15 November 2010 (has links)
The goal of this thesis was the advanced design, fabrication, and application of combined atomic force microscopy - scanning electrochemical microscopy (AFMSECM) probes for high-resolution topographical and electrochemical imaging. The first part of the thesis describes innovative approaches for the optimization of AFM-SECM probe fabrication with recessed frame electrodes. For this purpose, commercial silicon nitride AFM cantilevers were modified using optimized critical fabrication processes including improved metallization for the deposition of the electrode layer, and novel insulation strategies for ensuring localized electrochemical signals. As a novel approach for the insulation of AFM-SECM probes, sandwiched layers of PECVD SixNy and SiO2, and plasma-deposited PFE films were applied and tested. Using sandwiched PECVD SixNy and SiO2 layers, AFM-SECM probes providing straight (unbent) cantilevers along with excellent insulation characteristics facilitating the functionality of the integrated electrode were reproducibly obtained. Alternatively, PFE thin films were tested according to their utility for serving as a mechanically flexible insulating layer for AFM-SECM probes. The electrochemical characterization of PFEinsulated AFM-SECM probes revealed excellent insulating properties at an insulation thickness of only approx. 400 nm. Finally, AFM-SECM cantilevers prepared via both insulation strategies were successfully tested during AFM-SECM imaging experiments. In the second part of this thesis, disk-shaped nanoelectrodes were for the first time integrated into AFM probes for enabling high-resolution AFM-SECM measurements. Disk electrodes with an electrode radius < 100 nm were realized, which provides a significantly improved lateral resolution for SECM experiments performed in synchronicity with AFM imaging. Furthermore, the developed fabrication scheme enables producing AFM-SECM probes with integrated disk nanoelectrodes at significantly reduced time and cost based on a highly reproducible semi-batch fabrication process providing bifunctional probes at a wafer scale. The development of a detailed processing strategy was accompanied by extensive simulation results for developing a fundamental understanding on the electrochemical properties of AFM-SECM probes with nanoscale electrodes, and for optimizing the associated processing parameters. Thus fabricated probes were electrochemically characterized, and their performance was demonstrated via bifunctional imaging at model samples. The third part of this thesis describes the development and characterization of the first AFM tip-integrated potentiometric sensors based on solid-state electrodes with submicrometer dimensions enabling laterally resolved pH imaging. Antimony and iridium oxides were applied as the pH sensitive electrode material, and have been integrated into the AFM probes via conventional microfabrication strategies. The pH response of such AFM tip-integrated integrated pH microsensors was tested for both material systems, and first studies were performed demonstrating localized pH measurements at a model system.
324

Functions and differentiations of photosynthetic membranes (thylakoid membranes) in a green alga and nitrogen-fixing filamentous cyanobacteria analyzed by multimodal spectral imaging and fluorescence lifetime imaging / 多角的顕微スペクトル画像及び蛍光寿命画像を用いた緑藻と窒素固定型糸状シアノバクテリアにおける光合成膜の機能と分化の研究

Nozue, Shuho 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20604号 / 理博第4319号 / 新制||理||1620(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)准教授 熊﨑 茂一, 教授 林 重彦, 教授 寺嶋 正秀 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
325

Optically Induced Forces In Scanning Probe Microscopy

Kohlgraf-Owens, Dana 01 January 2013 (has links)
The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific phenomena associated with optically induced force (OIF) detection in the near-field where light can be detected with high spatial resolution close to material interfaces. This is accomplished using a scanning probe microscope (SPM), which has the advantage of already having a sensitive force detector integrated into the system. The two microscopies we focus on here are atomic force microscopy (AFM) and nearfield scanning optical microscopy (NSOM). By detecting surface-induced forces or force gradients applied to a very small size probe (~ 20 nm diameter), AFM measures the force acting on the probe as a function of the tip-sample separation or extracts topography information. Typical NSOM utilizes either a small aperture (~ 50 150  nm diameter) to collect and/or radiate light in a small volume or a small scatterer (~ 20 nm diameter) in order to scatter light in a very small volume. This light is then measured with an avalanche photodiode or a photomultiplier tube. These two modalities may be combined in order to simultaneously map the local intensity distribution and topography of a sample of interest. A critical assumption made when performing iv such a measurement is that the distance regulation, which is based on surface induced forces, and the intensity distribution are independent. In other words, it is assumed that the presence of optical fields does not influence the AFM operation. However, it is well known that light exerts forces on the matter with which it interacts. This light-induced force may affect the atomic force microscope tip-sample distance regulation mechanism or, by modifying the tip, it may also indirectly influence the distance between the probe and the surface. This dissertation will present evidence that the effect of optically induced forces is strong enough to be observed when performing typical NSOM measurements. This effect is first studied on common experimental situations to show where and how these forces manifest themselves. Afterward, several new measurement approaches are demonstrated, which take advantage of this additional information to either complement or replace standard NSOM detection. For example, the force acting on the probe can be detected while simultaneously extracting the tip-sample separation, a measurement characteristic which is typically difficult to obtain. Moreover, the standard field collection with an aperture NSOM and the measurement of optically induced forces can be operated simultaneously. Thus, complementary information about the field intensity and its gradient can be, for the first time, collected with a single probe. Finally, a new scanning probe modality, multi-frequency NSOM (MF-NSOM), will be demonstrated. In this approach, the tuning fork is driven electrically at one frequency to perform a standard tip-sample distance regulation to follow the sample topography and optically driven at another frequency to measure the optically induced force. This novel technique provides a viable alternative to standard NSOM scanning and should be of particular interest in the long wavelength regime, e.g. far IR and THz.
326

Spatial Filtering Techniques for Large Penetration Depth and Volume Imaging in Fluorescence Microscopy

Purnapatra, Subhajit Banergjee January 2013 (has links) (PDF)
In the past two decades, Fluorescence microscopy has imparted tremendous impact in Biology and Imaging. Several super-resolution Fluorescence imaging techniques (e.g. PALM, STED, STORM, 4Pi and structured illumination) have enabled diff raction-unlimited imaging. But high resolution is limited to a depth of few tens of microns. Thus, deep tissue imaging and simultaneous volume imaging have become a highly sought after feature in Fluorescence microscopy. The research work in this thesis address these issues by using spatial filtering techniques to tailor the point spread function (PSF) which uniquely characterizes the optical sys-tem. The advantage of this approach lies in the fact that intricate details about the focal region can be computed and designed with the help of well established theory and experimentation. In particular, this technique was applied to both spherical and cylindrical lenses. The former was used to generate Bessel-like, non-diffracting beams which demonstrated the ability to penetrate deep inside tissue-like media and thereby yielded an imaging depth of nearly 650μm as compared to about 200μm for a state-of-the-art confocal microscope. The latter gave rise to light-sheet and it's extended version that is ideal for planar imaging at large penetration depths. Another development is the generation of multiple light-sheet illumination pattern that can simultaneously illuminate several planes of the specimen. The proposed multiple light-sheet illumination microscopy (MLSIM) technique may enable volume imaging in Fluorescence microscopy. The first two chapters of this thesis are introductory in nature and provides a general overview of the principles of Fluorescence microscopy and three state-of-the-art Fluorescence imaging techniques; namely confocal, multi-photon and light-sheet based microscopy. Confocal microscopes are widely considered as a standard tool for biologists and this discussion shows that even though they have made signi ficant contributions in the fields of biophysics, biophotonics and nanoscale imaging, their inability to achieve better penetration depth has prevented their use in thick, scattering samples such as biological tissue. The system PSF of a confocal microscope broadens as it goes deeper in-side a scattering sample resulting in poor-resolution thereby destroying the very concept of high resolution, noise-free imaging. Additionally, confocal microscopy suffers from in-creased photo-bleaching due to o -layer (above and below the focal plane) excitation and low temporal resolution since it requires point-by-point scanning mechanism. On the other hand, multi-photon microscopy offers several advantages over confocal microscopy such as reduced photo-bleaching and inherent optical sectioning ability, however, it still lacks in providing high temporal resolution. Light-sheet based microscopy have gained popularity in recent years and promises to deliver high spatio-temporal resolution with minimized photo-bleaching. Recently, a considerable amount of research has been dedicated to further develop this promising technique for a variety of applications. The ability to look deeper inside a biological specimen has profound implications. How-ever, at depths of hundreds of microns, several effects (such as scattering, PSF distortion and noise) deteriorates the image quality and prohibits detailed study of key biological phenomenon. Chapter 3 of this thesis describes the original research work which experimentally addresses to this issue. Here, Bessel-like beam is employed in conjugation with an orthogonal detection scheme to achieve imaging at large penetration depth. Bessel beams are penetrative, non-di ffracting and have self-reconstruction properties making them a natural choice for imaging scattering prone specimens which are otherwise inaccessible by other microscopy imaging techniques such as, Widefield, CLSM, 4PI, Structural illumination microscopy and others. In this case such a Bessel-like beam is generated by masking the back-aperture of the excitation objective with a ring-like spatial filter. The proposed excitation scheme allow continuous scanning by simply translating the detection optics. Additionally, only a pencil-like region of the specimen can be illuminated at a given instance thereby reducing premature photobleaching of neighboring regions. This illumination scheme coupled with orthogonal detection shows the ability of selective imaging from a desired plane deep inside the specimen. In such a configuration, the lateral resolution of the illumination arm determines the axial resolution of the overall imaging system. Such an imaging system is a boon for obtaining depth information from any desired specimen layer that includes nano-particle tracking in thick tissue. Experiments performed by imaging the Fluorescent polymer tagged-CaCO3 particles and yeast cell in a tissue-like gel-matrix demonstrates penetration depth that extends up to 650 m. This will advance the field of fluorescence imaging microscopy and imaging. Similar to the ability to observe deep inside a sample, simultaneous 3D monitoring of whole specimens play a vital role in understanding many developmental process in Biology. At present, light-sheet based microscopy is the prime candidate amongst the various microscopy techniques, that is capable of providing high signal-to-background-ratio as far as planar imaging is concerned. Since spatial filtering technique was found to successfully give rise to novel features (such as large penetration depth) in a fluorescence microscope setup, a logical extension would be to implement a similar approach with a light-sheet based microscope setup. These implementations are discussed in Chapter 4 of this thesis where spatial filtering is employed with cylindrical lenses. For facilitating computational and experimental studies, a vectorial formalism was derived to give an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the point spread function of a cylindrical lens. Commonly used assumptions are made in the derivation such as no back-scattering and negligible contribution from evanescent fields. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Computational studies were carried out to determine the polarization effects and calculate the system resolution. Experimental comparison of light-sheet intensity pro les show good agreement with the theoretical calculations and hence validate the model. This formalism was derived as a first step since it gives the essential understanding of tightly focused E-fields of a high N.A. cylindrical lens systems and thereby helps in further understanding the effect of spatial filtering. As the next step, generation of extended light-sheet for fluorescence microscopy is pro-posed by introducing a specially designed double-window spatial filter at the back-aperture of a cylindrical lens. The filter allows the light to pass through the periphery and center of a cylindrical lens. When illuminated with a plane wave, the proposed filter results in an extended depth-of-focus along with side-lobes which are due to other interferences in the transverse focal plane. Computational studies show a maximum extension of light-sheet by 3:38 times for single photon excitation, and 3:68 times for multi-photon excitation as compared to state-of-art single plane illumination microscopy (SPIM) system and essentially implies a larger field of view. Finally, generation of multiple light-sheet pattern is proposed and demonstrated using a different spatial filter placed at the back aperture of a cylindrical lens. A complete imaging setup consisting of multiple light-sheets for illumination and an orthogonal detection arm, is implemented for volume imaging in fluorescence microscopy. This proposed scheme is a single shot technique that enables whole volume imaging by simultaneously exciting multiple specimen layers. Experimental results confirm the generation of multiple light-sheets of thickness 6:6 m with an inter-sheet spacing of 13:4 m. Imaging of 3 5 m sized fluorescently coated Yeast cells (encaged in Agarose gel-matrix) is per-formed and conclusively demonstrates the usefulness and potential of multiple light-sheet illumination microscopy (MLSIM) for volume imaging. As part of the future scope of the research work presented in this thesis, the Bessel-beam based improved depth microscopy technique may attract applications in particle tracking deep inside tissues and optical injection apart from fluorescence imaging applications. The vectorial formalism derived for cylindrical lens can be used to predict other, complex optical setups involving cylindrical lenses. Extended light-sheet generation proposed in this work by using appropriate spatial filtering with a cylindrical lens, complements the existing and popular selective plane illumination microscopy technique and may facilitate the study of large biological specimens (such as, full-grown Zebra sh and tissue) with high spatial resolution and reduced photobleaching. Finally, the MLSIM technique presented in this thesis may accelerate the field of developmental biology, cell biology, fluorescence imaging and 3D optical data storage.
327

DEVELOPMENT OF FLUORESCENCE-DETECTED PHOTOTHERMAL MICROSCOPY METHODS FOR MAPPING CHEMICAL COMPOSITION

Aleksandr Razumtcev (18097990) 04 March 2024 (has links)
<p dir="ltr">The beautiful complexity of our world is manifested in how macro- and even planetary-scale processes are essentially completely determined and regulated by chemical and physical transformations happening at the micro- and nanoscale. The introduction and subsequent development of optical microscopy methods have provided us with a unique opportunity to visualize, probe, and sometimes even control these processes that are too small to be seen by the human eye by their nature.</p><p dir="ltr">Among the great variety of truly impressive advances in microscopy instrumentation, two techniques stand out in their widespread and usefulness. First of them, fluorescence imaging has completely revolutionized the study of biological specimens and living systems due to its unprecedented single-molecule sensitivity and resolution combined with video-rate imaging capability. On the other hand, chemical imaging in the mid-infrared region provides an unmatched amount of chemical information enabling label-free mapping of the spatial distribution of various classes of biological molecules. However, each of these techniques falls short where the other excels. For example, despite its high resolution and sensitivity, fluorescence imaging does not carry direct chemical information and relies on labeling specificity, while infrared microscopy is diffraction-limited at the resolution of several micrometers and suffers from low penetration depth in aqueous solutions.</p><p dir="ltr">This dissertation introduces a novel imaging method designed to combine the advantages of fluorescence imaging and infrared spectroscopy. Fluorescence-detected photothermal mid-IR (F-PTIR) microscopy is presented in <b>chapter 1</b> as a technique enabling sub-diffraction chemically-specific microscopy by detecting local temperature-induced fluctuations in fluorescence intensity to inform on localized mid-infrared absorption. F-PTIR applications in targeted biological microspectroscopy (<b>chapter 1</b>) and pharmaceutical materials (<b>chapters 2 and 3</b>) analysis are demonstrated to highlight the potential of this new method. Furthermore, instrumentation developments relying on modern radiation sources such as dual-comb quantum cascade laser and synchrotron infrared radiation are shown to improve spectral acquisition speed (<b>chapter 4</b>) and spectral coverage (<b>chapter 5</b>), respectively, to extend the application range of F-PTIR.</p>
328

Diversity of silica-scaled protists

Scoble, Josephine Margaret January 2013 (has links)
This thesis investigates the diversity of two silica-scaled protist groups, Paraphysomonadida and Thaumatomonadida by light and electron microscopical observations and sequencing (rDNA) on novel clonal cultures. Despite these groups of protist dominating pelagic, littoral as well as inland freshwater and soil habitats, they are taxonomically poorly understood to the extent that any progress in ecological theory is hampered. Now that environmental DNA sequencing is being carried out faster than we can characterise protists from culture it is important that we understand how molecular and physical diversity match up, especially because so many protists are morphospecies. Nearly one hundred isolates were cultured on which both morphological and molecular data was carried out in parallel to reveal around 50 new species of protist from eight different genera: two heterokont genera, Paraphysomonas and Incisomonas n. gen., and six cercozoan genera, Thaumatomonas, Allas, Reckertia, Thaumatospina n. gen., Cowlomonas n. gen., and Scutellomonas n. gen. These data make major contributions to taxonomy and understanding aspects of protist diversity where previously morphological diversity was heavily biased towards over- generalized morphotypes. This thesis quickly showed that gross lumping of morphospecies was true of Paraphysomonas, for which many of the isolates cultured herein might have been regarded as one species (not more than 20). The many cultured isolates exhibited varied cell and scale morphology, and by sequencing (rDNA), it was possible to see the evolution of scale morphology map on to trees. This marriage of molecular and morphological data made it possible to view distinct groups of species that shared scale detail that might have otherwise been overlooked had either method been used alone. This research has shed significant light on how scale morphology can be used as reliable taxonomic marker for protists, the insights of which can be applied to make taxonomic improvements to other silica-scaled protist groups.
329

Digital holographic microscopy for three-dimensional studies of bacteria

Flewellen, James Lewis January 2012 (has links)
Holography has the ability to render three-dimensional information of a recorded scene by capturing both the amplitude and phase of light incident on the recording medium. The application of digital camera technology and high-speed computing means digital holograms can be analysed numerically and novel applications can be found for this technology. This thesis explores the potential for both inline and off-axis digital holographic microscopy to study the three-dimensional swimming behaviour of bacteria. A high-magnification (225x) digital holographic microscope was designed and constructed with the ability to switch easily between inline and off-axis imaging modalities. Hardware aspects, in particular the illumination source, the choice of camera and data transfer rates, were considered. Novel strategies for off-axis holography combining dark field microscopy were designed and implemented. The localisation accuracy of the inline imaging modality was assessed by studying samples of polystyrene microspheres. The microscope is sensitive to stage drift on the order of angstroms per second and can successfully localise microspheres in dilute suspensions at least 100&mu;m from the objective specimen plane. As a simple test of the capabilities of the microscope, the diffusion coefficient of a 0.5&mu;m microsphere was found to be isotropic and consistent with the theoretical value. Amplitude and phase image reconstructions from the off-axis modality are demonstrated. High-magnification dark field off-axis holographic microscopy is shown to be superior to inline microscopy in localising 100nm gold nanoparticles. An artifact from our method of dark-field imaging, however, restricts the depth range to 15&mu;m. A lower-magnification (45x) configuration of the microscope was used to study the 3D swimming behaviour of wild type Escherichia coli as a qualitative demonstration of the potential for this instrument in microbiological applications.
330

Confined Mesoscopic Fluid-like Films Analyzed with Frequency Modulation and Acoustic Detection

Fernandez Rodriguez, Rodolfo 21 November 2014 (has links)
Complete understanding of the physics underlying the changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like systems undergo at solid-liquid interfaces or under confinement remains one of the major challenges in condensed matter physics. Moreover, studies of confined mesoscopic fluid films are relevant to technological areas like adhesion, wetting processes and nanotribology. This thesis addresses the interaction between two sliding solids interfaces separated by a nanometer sized gap, with emphasis on the role of the mesoscopic fluid film trapped between them. For this purpose we integrated two acoustic techniques, recently introduced by our group, into a sub-nanometer precision and thermal drift corrected scanning probe microscope (SPM): the shear-force/acoustic near-field Microscope (SANM) and the whispering gallery acoustic sensing (WGAS). The SANM monitors the sound waves originating in the probe-layer interaction while the motion of the probe is monitored by the WGAS. Additionally, we decouple the interaction forces by using frequency modulation and measure the local tunneling current to help establish the location of the substrate. Our results show a strong correlation between the elastic component of the probe's interaction and the SANM amplitude, as well as between the phase lag response of the fluid relative to the probe's excitation (represented by the SANM phase) and the onset of the probe-sample contact region. Frequency modulation SANM-WGAS brings a new acoustic sensing mechanism to the challenging characterization of fluid-like physical systems at the nanometer scale.

Page generated in 0.0789 seconds