• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 453
  • 253
  • 81
  • 58
  • 28
  • 20
  • 13
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1056
  • 234
  • 206
  • 124
  • 117
  • 115
  • 95
  • 86
  • 83
  • 83
  • 73
  • 70
  • 65
  • 60
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Modelagem PK/PD do efeito anticancerígeno do etoposídeo em ratos com tumor de walker-256 utilizando concentrações livres intratumorais determinaas por microdiálise / Pharmacokinetic/Pharmacodynamic modeling of etoposide anticancer effect in Walker-256 tumor-bearing rats using free intratumoral concentrations determined by microdialysis

Pigatto, Maiara Cássia January 2015 (has links)
Objetivo: O objetivo do presente estudo foi descrever a relação entre as concentrações plasmáticas totais e livres tumorais do etoposídeo (ETO) e a inibição do crescimento do tumor observada em ratos Wistar portadores de tumor Walker- 256 (W256) utilizando a modelagem farmacocinética/farmacodinâmica (PK/PD). Métodos: Os procedimentos com animais foram aprovados no CEUA/UFRGS sob o número 22302. Os experimentos de farmacocinética foram realizados para determinar concentrações plasmáticas e livres em duas regiões do tumor sólido W256 através de microdiálise. Após a administração do ETO nas doses de 10 ou 20 mg/kg i.v. bolus em ratos Wistar portadores de tumor W256, amostras de sangue e microdialisado de tecido do centro e periferia do tumor foram coletadas simultaneamente, até 7 h pós-dose, para determinar o fator de penetração no tumor. Um método analítico por CLAE-UV foi desenvolvido e validado para quantificação do etoposídeo nas amostras de plasma e dialisado. Os experimentos de farmacodinâmica foram conduzidos em ratos portadores de tumor W256 que receberam ETO 5 e 10 mg/kg i.v. bolus uma vez ao dia por 8 e 4 dias, respectivamente. O volume dos tumores foram monitorados diariamente durante 30 dias. Análise não-compartimental dos dados de PK foi realizada no WinNonlin®. A modelagem dos dados PK e PK/PD foi realizada no Monolix®, utilizando abordagem populacional. Os dados PK/PD foram analisados usando o modelo Simeoni TGI modificado através da introdução de uma função Emax para descrever a relação nãolinear entre a concentração plasmática e tumoral e o efeito. Resultados e Discussão: O método por CLAE-UV foi desenvolvido e validado para quantificar as amostras de ETO em plasma e tecido. A penetração do ETO no tumor foi maior na periferia (61 ± 15 % e 61 ± 29 %) do que no centro do tumor (34 ± 6 % e 28 ± 11 %) após administração das doses 10 e 20 mg/kg, respectivamente (ANOVA, α = 0.05). Um modelo de 4 compartimentos compreendendo uma distribuição saturável (cinética de Michaelis-Menten) nos compartimentos tumorais a partir do compartimento central modelou simultaneamente os perfis de concentração-tempo do ETO em plasma e em ambas regiões do tumor. O modelo populacional PK/PD Simeoni TGI–Emax foi capaz de descrever o efeito antitumoral dependente do regime de administração do ETO utilizando concentrações totais plasmáticas ou livres no tumor, resultando em um maior k2max (potência máxima) para as concentrações livres (25,8 mL.μg-1.dia-1 - intratumoral vs. 12,6 mL.μg-1.dia-1 - plasma total). Conclusões: Os resultados mostram que a utilização das concentrações livres do fármaco no tumor para a modelagem PK/PD pode fornecer um melhor entendimento da relação farmacocinética e farmacodinâmica e melhoram a capacidade de previsão do modelo, considerando que a eficácia dos fármacos antineoplásicos no tratamento de tumores sólidos é dependente da capacidade do fármaco em se distribuir no tecido tumoral. / Objective: The aim of this study was to describe the relationship between total plasma and free interstitial tumor etoposide (ETO) concentrations and the drug tumor growth inhibition observed in a Walker-256 (W256) tumor-bearing Wistar rat model using the pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods: The experiments with animals were approved by CEUA/UFRGS (protocol number 22302). Pharmacokinetic experiments were conducted to determine total plasma and free intratumoral concentrations in two regions of W256 solid tumor by microdialysis. After administration of ETO 10 or 20 mg/kg i.v. bolus to W256 tumorbearing Wistar rats, blood and tissue microdialysate samples from tumor center and periphery were simultaneously collected up to 7h to determine the tumor penetration factor. An analytical HPLC-UV method was developed and validated for quantification of ETO in plasma and microdialysate samples. The pharmacodynamic experiments were conducted in W256 tumor-bearing rats that received ETO 5 or 10 mg/kg i.v. bolus every day for 8 and 4 days, respectively. Tumor volumes were monitored daily for 30 days. Non-compartmental analysis of PK data was performed in WinNonlin®. The PK and PK/PD modeling by population approach were performed using Monolix®. PK/PD data were analyzed using a modification of Simeoni TGI model by introducing an Emax function to describe the nonlinear relationship between tumor and plasma concentrations and effect. Results and Discussion: The HLPCUV method was developed and validated to determine plasma and tissue samples of ETO. ETO tumor penetration was higher in the tumor periphery (61 ± 15 % and 61 ± 29 %) than center (34 ± 6 % and 28 ± 11 %) following 10 and 20 mg/kg doses, respectively (ANOVA, α = 0.05). A 4-compartment structural model comprising a saturable distribution (Michaelis-Menten kinetics) into the tumor compartments from the central compartment simultaneously described the ETO concentration–time profiles in plasma and both tumor regions. The PK/PD population Simeoni TGI–Emax model was capable of describing the schedule-dependent antitumor effects of ETO using total plasma or free tumor concentrations obtained in a W256-tumor bearing Wistar rat model, resulting in higher k2max (maximal potency) for free concentrations (25.8 mL.μg-1.day-1 - intratumoral vs. 12.6 mL.μg-1.day-1 total plasma). Conclusions: The results showed that the use of free intratumoral drug concentrations in the PK/PD modeling can provide a better understanding of the pharmacokinetics and pharmacodynamics relationship and improve the forecasting ability of the models considering that the efficacy of antineoplastic drugs in the treatment of solid tumors is dependent on the drug ability to distribute into the tumor.
262

Modelagem PK/PD do efeito anticancerígeno do etoposídeo em ratos com tumor de walker-256 utilizando concentrações livres intratumorais determinaas por microdiálise / Pharmacokinetic/Pharmacodynamic modeling of etoposide anticancer effect in Walker-256 tumor-bearing rats using free intratumoral concentrations determined by microdialysis

Pigatto, Maiara Cássia January 2015 (has links)
Objetivo: O objetivo do presente estudo foi descrever a relação entre as concentrações plasmáticas totais e livres tumorais do etoposídeo (ETO) e a inibição do crescimento do tumor observada em ratos Wistar portadores de tumor Walker- 256 (W256) utilizando a modelagem farmacocinética/farmacodinâmica (PK/PD). Métodos: Os procedimentos com animais foram aprovados no CEUA/UFRGS sob o número 22302. Os experimentos de farmacocinética foram realizados para determinar concentrações plasmáticas e livres em duas regiões do tumor sólido W256 através de microdiálise. Após a administração do ETO nas doses de 10 ou 20 mg/kg i.v. bolus em ratos Wistar portadores de tumor W256, amostras de sangue e microdialisado de tecido do centro e periferia do tumor foram coletadas simultaneamente, até 7 h pós-dose, para determinar o fator de penetração no tumor. Um método analítico por CLAE-UV foi desenvolvido e validado para quantificação do etoposídeo nas amostras de plasma e dialisado. Os experimentos de farmacodinâmica foram conduzidos em ratos portadores de tumor W256 que receberam ETO 5 e 10 mg/kg i.v. bolus uma vez ao dia por 8 e 4 dias, respectivamente. O volume dos tumores foram monitorados diariamente durante 30 dias. Análise não-compartimental dos dados de PK foi realizada no WinNonlin®. A modelagem dos dados PK e PK/PD foi realizada no Monolix®, utilizando abordagem populacional. Os dados PK/PD foram analisados usando o modelo Simeoni TGI modificado através da introdução de uma função Emax para descrever a relação nãolinear entre a concentração plasmática e tumoral e o efeito. Resultados e Discussão: O método por CLAE-UV foi desenvolvido e validado para quantificar as amostras de ETO em plasma e tecido. A penetração do ETO no tumor foi maior na periferia (61 ± 15 % e 61 ± 29 %) do que no centro do tumor (34 ± 6 % e 28 ± 11 %) após administração das doses 10 e 20 mg/kg, respectivamente (ANOVA, α = 0.05). Um modelo de 4 compartimentos compreendendo uma distribuição saturável (cinética de Michaelis-Menten) nos compartimentos tumorais a partir do compartimento central modelou simultaneamente os perfis de concentração-tempo do ETO em plasma e em ambas regiões do tumor. O modelo populacional PK/PD Simeoni TGI–Emax foi capaz de descrever o efeito antitumoral dependente do regime de administração do ETO utilizando concentrações totais plasmáticas ou livres no tumor, resultando em um maior k2max (potência máxima) para as concentrações livres (25,8 mL.μg-1.dia-1 - intratumoral vs. 12,6 mL.μg-1.dia-1 - plasma total). Conclusões: Os resultados mostram que a utilização das concentrações livres do fármaco no tumor para a modelagem PK/PD pode fornecer um melhor entendimento da relação farmacocinética e farmacodinâmica e melhoram a capacidade de previsão do modelo, considerando que a eficácia dos fármacos antineoplásicos no tratamento de tumores sólidos é dependente da capacidade do fármaco em se distribuir no tecido tumoral. / Objective: The aim of this study was to describe the relationship between total plasma and free interstitial tumor etoposide (ETO) concentrations and the drug tumor growth inhibition observed in a Walker-256 (W256) tumor-bearing Wistar rat model using the pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods: The experiments with animals were approved by CEUA/UFRGS (protocol number 22302). Pharmacokinetic experiments were conducted to determine total plasma and free intratumoral concentrations in two regions of W256 solid tumor by microdialysis. After administration of ETO 10 or 20 mg/kg i.v. bolus to W256 tumorbearing Wistar rats, blood and tissue microdialysate samples from tumor center and periphery were simultaneously collected up to 7h to determine the tumor penetration factor. An analytical HPLC-UV method was developed and validated for quantification of ETO in plasma and microdialysate samples. The pharmacodynamic experiments were conducted in W256 tumor-bearing rats that received ETO 5 or 10 mg/kg i.v. bolus every day for 8 and 4 days, respectively. Tumor volumes were monitored daily for 30 days. Non-compartmental analysis of PK data was performed in WinNonlin®. The PK and PK/PD modeling by population approach were performed using Monolix®. PK/PD data were analyzed using a modification of Simeoni TGI model by introducing an Emax function to describe the nonlinear relationship between tumor and plasma concentrations and effect. Results and Discussion: The HLPCUV method was developed and validated to determine plasma and tissue samples of ETO. ETO tumor penetration was higher in the tumor periphery (61 ± 15 % and 61 ± 29 %) than center (34 ± 6 % and 28 ± 11 %) following 10 and 20 mg/kg doses, respectively (ANOVA, α = 0.05). A 4-compartment structural model comprising a saturable distribution (Michaelis-Menten kinetics) into the tumor compartments from the central compartment simultaneously described the ETO concentration–time profiles in plasma and both tumor regions. The PK/PD population Simeoni TGI–Emax model was capable of describing the schedule-dependent antitumor effects of ETO using total plasma or free tumor concentrations obtained in a W256-tumor bearing Wistar rat model, resulting in higher k2max (maximal potency) for free concentrations (25.8 mL.μg-1.day-1 - intratumoral vs. 12.6 mL.μg-1.day-1 total plasma). Conclusions: The results showed that the use of free intratumoral drug concentrations in the PK/PD modeling can provide a better understanding of the pharmacokinetics and pharmacodynamics relationship and improve the forecasting ability of the models considering that the efficacy of antineoplastic drugs in the treatment of solid tumors is dependent on the drug ability to distribute into the tumor.
263

Mechanism of action of novel single arm alkylating "combi-molecules" and bi-functional "bis-combi-molecules"

Al-Safadi, Sherin January 2008 (has links)
No description available.
264

Pharmacokinetics and pharmacodynamics of oral dexamethasone in healthy horses

Grady, Jason A. January 1900 (has links)
Master of Science / Department of Clinical Sciences / Elizabeth G. Davis / Objective: To determine pharmacokinetic and pharmacodynamic properties of oral dexamethasone solution and powder compared to intravenous dexamethasone solution in healthy horses. Animals: 6 horses, 13-27 years if age, 385-630 kg Procedures: In a randomized, cross-over block design six healthy adult horses each received the following treatments 1) dexamethasone solution IV 0.05 mg/kg, 2) dexamethasone solution orally (PO) 0.05 mg/kg, and 3) dexamethasone powder PO 0.05 mg/kg all in the fed and fasted state. Each horse acted as an untreated control as secretion of cortisol was monitored for normal circadian rhythm. Quantification of plasma dexamethasone concentration and serum cortisol activity was determined by LC/MS and chemiluminescent enzyme immunoassay, respectively. Results: Each horse exhibited a circadian rhythm in cortisol secretion; however there was variation present between each horse. Mean cortisol concentrations at 6:00 AM and 8:00 AM were significantly higher than concentrations at 8:00 PM and 10:00PM. Cortisol concentrations were significantly less than base-line starting 1 hour post-administration of dexamethasone through 72 hours for the fasted treatment groups, and 2 hours through 48 hours for the fed groups. Pharmacokinetic modeling resulted in a two compartment model for the IV administration with elimination from the central compartment, and a one compartment model for orally administered dexamethasone. Oral, fasted, compounded powder achieved a significantly higher maximum concentration (Cmax) than both fasted and fed oral dexamethasone solutions. The AUC0inf for the orally administered compounded powder was significantly different when comparing fasted versus fed treatment groups. Bioavailability ranged between 33% and 70% among treatment groups, but due to the high variability there was not a significant difference. Conclusions and Clinical Relevance: Hospitalization of the horses did not have an effect on their circadian rhythm of cortisol secretion. Oral and intravenous administration of dexamethasone resulted in adrenal suppression with cortisol concentrations returning to base-line 48-72 hours post-administration. Although bioavailability was variable cortisol suppression was similar among all treatment groups. The variability in oral absorption will need to be taken in to account for oral dosing of dexamethasone.
265

Application of real-time quantitative RT-PCR for improving the diagnosis, treatment, and control of bovine Anaplasmosis

Reinbold, James Brandon January 1900 (has links)
Doctor of Philosophy / Department of Diagnostic Medicine/Pathobiology / Johann F. Coetzee / The Office International des Epizooties (OIE) Animal Health Code categorizes bovine anaplasmosis as a notifiable disease. Many species of the genus Anaplasma cause anaplasmosis. Co-infections with two or more Anaplasma spp. occur in cattle. A competitive ELISA is regarded as a reliable test for identifying A. marginale-infected cattle. However, cross-reactivity among related Anaplasma spp. has been reported when using cELISA. In the absence of effective treatment strategies and vaccine availability, anaplasmosis control strategies are primarily focused on disease identification and prevention and development of chemosterilization strategies. Four studies were completed to improve the diagnosis, treatment, and control of bovine anaplasmosis. In the first study, a real-time qRT-PCR was developed to detect as few as 100 copies of 16S rRNA of both A. marginale and A. phagocytophilum in the same reaction. This detection limit was equitable to the minimum infective unit of one A. marginale bacterium. In the second study, qRT-PCR results determined needle-free injection was superior to needle injection for controlling iatrogenic transmission of A. marginale in cattle. The qRT-PCR demonstrated 100% sensitivity by 21 days post-infection and 21 days prior to 100% sensitivity with cELISA. The third study determined the pharmacokinetic parameters of chlortetracycline in group fed, ruminating Holstein steers: volume of distribution (40.9 L⁄kg); rate constant (0.0478 h-1); dose-normalized area under the curve (0.29 h•µg⁄L); clearance (1.8 L⁄kg⁄h); elimination half-life (16.2 h); maximum concentration/dose (4.5 ng⁄mL); and time of maximum concentration (23.3 h). Dose linearity was confirmed for oral chlortetracycline dosages of 4.4, 11, and 22 mg/kg/day. The final study established an in vivo pharmacokinetic-pharmacodynamic relationship between chlortetracycline and anaplasmosis carrier clearance in bovine plasma (85.3 ng/mL). The qRT-PCR confirmed chemosterilization of all oral chlortetracycline-treated cattle within 49 days of treatment. Furthermore, qRT-PCR was an effective alternative to the subinoculation of splenectomized cattle for accurate and precise disease classification. The diagnosis, treatment, and control of anaplasmosis were enhanced through the application of qRT-PCR. Further studies are necessary for determining the mechanism of action between chlortetracycline binding to the 30S ribosome of A. marginale and carrier clearance.
266

Mechanism and Functional Consequence of MRP2 Mislocalization in Nonalcoholic Steatohepatitis

Dzierlenga, Anika L. January 2016 (has links)
Adverse drug reactions (ADRs) are a pervasive complication in the realm of pharmacotherapy. At the root of ADRs lies interindividual variability in drug response, which can range from allergic reactions, to genetic variability, to any factors that influence the pharmacokinetics of a drug. Nonalcoholic steatohepatitis (NASH) is the late-stage of non-alcoholic fatty liver disease (NAFLD), characterized by fat deposition, oxidative stress, inflammation, and fibrosis. Over the last several years, alterations in drug metabolizing enzymes and transporters have been broadly characterized through NAFLD progression. Multidrug resistance-associated protein 2 (MRP2) is a canalicular efflux transporter that directs the biliary elimination of a wide variety of xenobiotics and metabolites. In NASH, MRP2 is mislocalized away from the canalicular membrane in a post-translational event. The mechanism and extent of this mislocalization has yet to be elucidated. While transporter misregulation has been shown to influence the disposition of a variety of substrates, the direct impact of MRP2 mislocalization on its overall transport capacity, and pharmacologic consequence of this change, is unknown. The purpose of this study was to elucidate the mechanism behind, and functional consequence of, MRP2/Mrp2 mislocalization in NASH, predominantly using the rodent methionine-and-choline-deficient (MCD) dietary model.To identify the mechanism of MRP2/Mrp2 mislocalization, a comparison of the activation status of various mediators of MRP2/Mrp2 retrieval was conducted between healthy and NASH livers. Results in rat samples and human NASH samples indicate that activation changes of these mediators, including radixin, PKCα, PKCδ, and PKA, are consistent with a shift toward active retrieval of MRP2/Mrp2 from the membrane, and some evidence of impaired membrane insertion is also present. Measurement of Mrp2 transport capacity was completed using pemetrexed, a novel Mrp2 probe substrate. Comparison of biliary excretion of pemetrexed between wild-type and Mrp2^(-/-) rats shows a 100% decrease, confirming that it relies upon Mrp2 for biliary excretion. NASH rats exhibited a 60% decrease in pemetrexed levels in the bile compared to their control counterparts, indicating that Mrp2 transport capacity is severely impaired in NASH rats. Finally, to ascertain the pharmacologic consequence of impaired Mrp2 transport, a study was conducted measuring the effects of the active morphine glucuronide on control and NASH rats. NASH rats exhibited a decreased biliary excretion, and increased systemic retention, of M3G. While they did also exhibit increased antinociception of M6G, the definitive impact of altered disposition on pharmacologic response was masked due to the interference of an MCD dietary effect on antinociception. Overall, the data reported herein identify active membrane retrieval as a mechanism of MRP2/Mrp2 mislocalization in NASH, and that mislocalization results in a 60% decrease in overall Mrp2 transport capacity. This decrease significantly hinders biliary excretion of Mrp2 substrates, and may result in ADRs by contributing to interindividual variability in drug response.
267

A critical appraisal of the clinical pharmacokinetics of isoniazid

Parkin, Donald Pysden 12 1900 (has links)
Thesis (PhD (Medicine. Pharmacology))--University of Stellenbosch, 1996. / The work presented in this thesis has contributed to the clarification of a number of issues related to the clinical pharmacokinetics of isoniazid and hydrozine in juvenile and adult patients of both sexes subject to potentially deleterious environmental factors: acute tuberculous disease; nutritional deprivation; simultaneous ingestion of rifampicin, pyrazinamide and ethionamide, each of which is potentially toxic in its own right. The advances are embodied in the developments listed here below. ...
268

OPIOID CODRUGS FOR PAIN MANAGEMENT

Chakraborty, Ujjwal 01 January 2011 (has links)
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissus damage or described in terms of such damage. Opioids are effective in treating moderate to severe pain, but opioid alone therapy is associated with several adverse effects, development of tolerance and addiction potential. One way to solve these problems is to administer opioids with adjuvant drugs. In this project several opioid molecules were combined with other adjuvant drugs in a single chemical entity to form a codrug. A series of codrugs were prepared by conjugation of an opioid with S-(-)-nornicotine, ketamine, norketamine and gabapentin. Several of the synthesized codrugs were evaluated for analgesic activity in the rats after oral administration. Codeine-S-(-)- nornicotine, 3-O-acetylmorphine-S-(-)-nornicotine, and N-ethoxycarbonylgabapentincodeine codrugs showed greater effectiveness as well as prolonged pain management properties as compared to the parent drugs. Stabilities of several synthesized codrugs were studied in aqueous solutions from pH 1.3-7.4, in simulated gastrointestinal fluids, in rat plasma and in brain homogenate. Only the ester-linked codrugs showed sign of hydrolysis in different solutions. Carbamate-linked codrugs didn’t cleave under any hydrolytic condition. Pharmacokinetic study was performed on the following three codrugs: 3-O-acetylmorphine-S-(-)-nornicotine, N-acetylgabapentin-codeine, and N-ethoxycarbonylgabapentin- codeine. The carbamate linkage in 3-O-acetylmorphine-S-(-)- nornicotine codrug did not cleave in vivo to produce parent drugs. The ester linkage in N-acetylgabapentin- codeine codrug cleaved in vivo to produce codeine and N-acetylgabapentin, but N-acetylgabapentin did not undergo hydrolysis to produce gabapentin. The ester linkage in N-ethoxycarbonylgabapentin-codeine codrug hydrolyzed slowly in plasma to produce N-ethoxycarbonylgabapentin and codeine and then the carbamate linkage in N-ethoxycarbonylgabapentin hydrolyzed even slowly to produce gabapentin. Produced codeine also metabolized to generate some amount of morphine. Thus, the design and synthesis of an opiate and gabapentin codrug was achieved which was stable enough in the gastrointestinal tract, showed enhanced analgesic effects as compared to the physical mixture of the parent drugs, and also produced the two parent drugs in blood plasma.
269

GASTROINTESTINAL ABSORPTION IN MAN AS A FUNCTION OF AGE: DISPOSITION OF D-XYLOSE AS A MODEL COMPOUND (BIOAVAILABILITY).

JOHNSON, STEPHEN LEWIS. January 1984 (has links)
The purpose of this study was to examine the pharmacokinetics of d-xylose in man as a function of age with particular emphasis on its absorption characteristics. This study required the development of a specific and sensitive method for the quantitation of xylose from plasma and urine. Following a clean-up procedure, plasma or urine samples are concentrated and undergo two sequential derivatization steps and then are quantitated by capillary column gas liquid chromatography (GLC). D-Xylose is frequently quantitated by a tedious colorimetric assay involving the use of thiourea, a proven animal carcinogen. We have evaluated a more expedient colorimetric assay employing less toxic reagents. Based upon these comparisons the "phloroglucinol" method has been recommended as a replacement for the currently used clinical method for quantitating d-xylose. The human studies revealed age related changes in some but not all d-xylose disposition parameters. Systemic, renal, and nonrenal clearances all declined with advancing age. The terminal elimination half life increased with age. Age had very little influence on the various volumes of distribution. In general, parameters relating to oral absorption showed no age-related dependence. In contrast to what is generally believed, the bioavailability of d-xylose did not decline with age. Lastly, this dissertation addresses the problem of how infusion data may best be fit. Concentration-time data may be fit by a nonlinear regression algorithm in two ways; (1) concentration-time data may be collected and fit both during infusion and after infusion is terminated, (2) concentration-time data may be collected only after the infusion is terminated and be fit as a bolus. Concentration-time data were computer simulated with random error and we found that fitting the entire curve gave the most accurate estimates of disposition parameters.
270

Investigating complex phenotypes: haplotype association mapping benzene pharmacokinetics in isogenic mouse strains

Knudsen, Gabriel Arther January 2011 (has links)
A role for gene variants in regulating the pharmacokinetics of systemically available toxicants has not yet been established. A panel of 18 genetically-diverse inbred mouse strains was used to determine the range of total exposure kinetic parameters in blood and bone marrow following a single oral administration of benzene (100 μg/kg) to male and female mice. Large ranges in several pharmacokinetic parameters were found when data from blood and bone marrow were analyzed. AUC and CL_F pharmacokinetic parameters in blood and bone marrow pharmacokinetics were strikingly different as were these parameters in males and females. Final clearance (CL_F) was found to be the most statistically robust pharmacokinetic parameter as it accounted for exposure of the matrix (AUC) and normalized for dose variations among the strains. The CL_F values in blood and bone marrow used for haplotype association mapping showed 331 and 164 quantitative trait loci with statistical significance, respectively (male mice; -logP>4). Two loci were found to be shared between males and females QTL bone marrow data sets and one common locus was found for male blood and bone marrow data. No overlap was found among blood QTL in males and females (or between blood and bone marrow data from females). Protein and mRNA expression data for the primary benzene-metabolizing enzymes CYP2E1 and UGT1A6 showed very little strain-dependent variation. Strain dependent differences in mRNA levels of NQO1 and MPO were small but statistically significant, as were those for GAPDH and β2-microglobulin. These data demonstrated that polymorphisms with the greatest contribution toward overall variations in systemic exposures occurred in genes encoding for non-metabolic proteins. While exposure does not equate to toxicity, identification of the genes regulating distribution and clearance may be useful for investigating host susceptibility to toxic effects following benzene exposure. This research was supported in part by the NIEHS NTP Grant N01ES45529, NIEHS Toxicology and Toxicogenomics Training Grant (5T32ES007091-29), NIEHS/NTP Division of Intramural Research, and Southwest Environmental Science Center Grant P3ES06694.

Page generated in 0.0449 seconds