• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1964
  • 1900
  • 365
  • 227
  • 184
  • 146
  • 83
  • 54
  • 53
  • 48
  • 46
  • 38
  • 26
  • 24
  • 24
  • Tagged with
  • 6192
  • 1010
  • 778
  • 721
  • 628
  • 626
  • 615
  • 587
  • 536
  • 506
  • 461
  • 453
  • 399
  • 382
  • 374
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
721

Microtensile bond strength of new paste/paste resin-modified glass ionomer cement systems : the effect of dentin pretreatment

Al-Fawaz, Yasser Fawaz, 1983- January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / MICROTENSILE BOND STRENGTH OF NEW PASTE/PASTE RESIN-MODIFIED GLASS IONOMER CEMENT SYSTEMS: THE EFFECT OF DENTIN PRETREATMENT by Yasser Fawaz Al-fawaz Indiana University School of Dentistry Indianapolis, Indiana Background: In order to improve the clinical performance of RMGIC 3M ESPE and GC America introduced paste/paste resin-modified glass ionomer cements, Ketac™ Nano and Fuji Filling™ LC, respectively. Both companies developed non-rinse substrate conditioners (i.e., Ketac Nano Primer-3M ESPE and GC Self-Conditioner-GC America) that should be used with these new materials instead of the conventional polyacrylic acid. It has been also advised by both manufacturer’s to use this novel substrate conditioner with the previously marketed RMGICs. Objective: to investigate whether the use of novel non-rinse conditioners (i.e., Ketac Nano Primer 3M ESPE and GC Self Conditioner GC America) as substrate pre-treatment and the new paste/paste resin-modified glass-ionomer cement, RMGIC (Ketac™ Nano 3M ESPE and Fuji Filling™ LC GC America) would affect the microtensile dentin bond strength (µTBS) of the material when compared to the traditional RMGIC with polyacrylic acid as a surface substrate pre-treatment. Materials and Methods: 96 extracted non-restored human molar were sectioned to expose occlusal dentin. Dentin surface was finished with SiC paper to standardize the smear layer. Bonding protocols of the different materials to dentin were performed following the use of two dentin conditioners. Eight groups (n=12) were tested: G1: Ketac Nano Primer + Ketac Nano, G2: Ketac Conditioner + Ketac Nano, G3: Ketac Nano Primer + Photac Fil, G4: Ketac Conditioner + Photac Fil, G5: GC Self Conditioner + Fuji Filling LC, G6: GC Cavity Conditioner + Fuji Filling LC, G7: GC Self Conditioner + Fuji II LC and G8: GC Cavity Conditioner + Fuji II LC. The specimens were stored in 37°C for 24h in 100% humidity before cutting non-trimmed beams for the µTBS with cross-sectional areas of approximately 0.8 × 0.8 mm2. Nine beams were used from each specimen. Test was done using universal testing machine at a cross-head speed of 1mm/min. Debonded specimens were examined under a stereomicroscope at 45× magnification to evaluate the failure mode. Eight randomly chosen representative debonded beams were imaged under a scanning electron microscope (SEM). Results: µTBS in MPa (mean ± SE) were: G1: 9.5±1.0, G2: 11.0±1.0, G3:20.0±1.0, G4:16.8±0.9, G5: 15.1±1.0, G6: pre-test failure, G7: 20.0±1.0, G8:14.1±0.9. Weibull-distribution survival analysis was used to compare the differences in microtensile peak stress among the groups. Group5 has cohesive predominant faultier mod while the other groups have adhesive predominant failure. Conclusion: Within the limitations of this study, the use of the novel non-rinse conditioners did not improve the microtensile bond strength of new paste/paste RMGIC to dentin. In fact, the use of the novel non-rinse conditioners enhanced the bond strength of the traditional RMGIC to dentin.
722

EFFECT OF EFFICIENCY OF SULFUR VULCANIZATION ON PROPERTIES OF GUM AND BLACK-FILLED NATURAL RUBBER VULCANIZATES

Boonkerd, Kanoktip 17 May 2006 (has links)
No description available.
723

Effect of Carbon Black Loading and Temperature on Cut Growth in N990-Filled Natural Rubber Vulcanizates

Adepetun, Adeyemi Adedayo 22 September 2011 (has links)
No description available.
724

An Analysis of Strength Retention During an Eight-Week Walk/Jog Training Program

Grantham, William C., 1950- 05 1900 (has links)
The purpose of this study was to determine the effects of an eight-week walk/jog program upon strength retention. Twenty-four male executives from Dallas, Texas represented the sample size Following eight weeks of resistive training, all subjects were pretested for strength and endurance measures. After the eight-week walk/jog program, all subjects were then retested adhering to the same pretest protocol. A two-way analysis of variance with repeated measures was used to test for mean group differences between pretest and posttest strength measures. A t-test for dependent means was utilized to ascertain differences in cardiovascular measurements. The alpha chosen to test the null hypotheses was the 0.05 level of significance. Results indicated that muscular strength was retained during the eight-week walk/jog program. No change in upper or lower extremity strength occurred, but significant improvements in maximal oxygen consumption and treadmill time were evidenced.
725

Autologous Fibrinogen Purification and Concentration For Use in Fibrin Sealant

Alston, Steven M. 08 June 2005 (has links) (PDF)
Fibrinogen concentrates are used widely as a sealant during and after surgery to reduce blood loss. Commercially available fibrin sealants are made from pooled human blood, which carries the risk of blood-borne diseases, and are expensive. These concerns have brought to focus the need for autologous fibrinogen concentrates. This need has been addressed by utilizing a unique approach in which fibrinogen is precipitated from plasma with protamine. The physical properties of fibrin sealant prepared from fibrinogen precipitated with protamine were evaluated. The optimal precipitation conditions included a plasma protamine concentration of 10 mg/mL at room temperature. Under these conditions 96% ± 4% of the fibrinogen present in the plasma was precipitated and 98% ± 0.9% of the precipitated fibrinogen was clottable. In addition, it was shown that almost 50% of the factor XIII in the plasma was also precipitated along with the fibrinogen. The tensile and adhesion strengths and kinetics of fibrin sealant prepared from protamine-fibrinogen concentrate were evaluated. Tensile strength and adhesion strength both increased with increasing fibrinogen concentration. Addition of calcium chloride significantly increased the tensile and adhesion strengths. The addition of aprotinin and ε-aminocaproic acid (used to inhibit natural fibrinolysis) to the fibrinogen concentrate was shown to have no effect on the mechanical properties of the sealant. Kinetic experiments showed that the clotting time decreased as the thrombin and fibrinogen concentrations were increased. A rat model with controlled renal incisions was employed to evaluate the hemostatic efficacy of the fibrin sealant made from the protamine-fibrinogen concentrate. The fibrin sealant significantly reduced the blood loss and bleeding time when compared with controls (no sealant, plasma, and a commercial product). The sealant also significantly reduced blood loss and bleeding time in rats that were anticoagulated with heparin. A mathematical model based on tensile strength and adhesion strength was developed to predict the bleeding time in the animal wound. Model predictions showed that the ability of the fibrin sealant to reduce bleeding time, and therefore blood loss, was limited by the adhesion strength.
726

National Collegiate Athletic Association Strength And Conditioning Coaches' Knowledge And Practices Regarding Prevention And Recognition Of Exertional Heat Stroke

Valdes, Anna 01 January 2013 (has links)
The purpose of this study was to assess and determine the current level of knowledge that National Collegiate Athletic Association (NCAA) Strength and Conditioning Coaches (SCCs) possess regarding exertional heat stroke (EHS) prevention and recognition and to determine if SCC certification type had any effect. Major findings of this study support the view that SCCs need more preparation, education and training to increase their competency in preventing and recognizing EHS. Research found that there was no significant difference in scores on the EHS scale based on SCC certification (CSCS vs. SCCC) after accounting for experience, education or division but the CSCS certified professionals scored higher on all the factors as compared to SCCs without the CSCS.. The major key finding was that SCCs lacked essential knowledge to prevent or recognize EHS. Furthermore, the study defines relevant EHS prevention and recognition competencies that an undergraduate curriculum, graduate curriculum and professional certification providers, should include and emphasize in their preparation programs.
727

DEVELOPMENT OF A NOVEL ERGONOMICS METHOD FOR DETERMINING MANUAL ARM STRENGTH

La Delfa, Nicholas Joseph 06 1900 (has links)
The primary purpose of this thesis was to develop, validate and implement a novel ergonomics tool for manual arm strength (MAS) prediction. In Chapter 2, an empirical study was conducted to: 1) fill in gaps in our MAS database, and 2) examine the relationships between MAS and shoulder/elbow moments, to help identify important sources of variance for future predictive modeling attempts. Chapter 3 focused on the evaluation of artificial neural network (ANN) and traditional multiple regression approaches for MAS prediction, and revealed that ANNs provided a more accurate and generalizable prediction of MAS for our specific dataset. Chapter 4 drew on the data and findings of Chapters 2 & 3, and described the development of the ‘Arm Force Field’ (AFF) method for MAS prediction. The AFF method can be used to predict the MAS for any percentage of the population, given only the simple inputs of force vector direction, hand location (relative to the right shoulder), and torso orientation. In Chapter 5, a theoretical examination of the relative changes in wrist strength, due to interacting forearm and wrist postures, was conducted. That study resulted in a set of regression equations that can be used to predict wrist strength correction factors in complex wrist and forearm postures, allowing for more accurate estimations of the limiting joint once the MAS is calculated. An example of the AFF method’s implementation is provided and discussed in Chapter 6. The four studies, presented in this thesis, add to the current knowledge related to strength prediction in ergonomics, and the AFF method has the potential to be easily integrated within digital human models, for more valid estimates of manual force capabilities for the population. / Dissertation / Doctor of Philosophy (PhD)
728

Effect of Amorphous Hydrogenated Carbon Multilayer Coating on Tensile and Torsional Strength of Single Crystal Silicon for Mechanical Reliability Enhancement of MEMS Structures / MEMS微細構造の機械的信頼性向上のための単結晶シリコンの引張およびねじり強度に及ぼす水素含有非晶質炭素多層膜の影響評価

Xia, Yuanlin 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24228号 / 工博第5056号 / 新制||工||1789(附属図書館) / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 土屋 智由, 教授 平方 寛之, 教授 江利口 浩二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
729

Mechanical properties of a layered wood-based composite panel with embedded cross-laminations

Cosovic, Bojan 01 May 2020 (has links)
The flexural behavior of a light-weight wood-based composite system was studied through destructive experiments. The composite panel system consisted of profiled dimensional lumber, which makes up the surface layers, and 1"-thick boards running across the surface layers. Considering the changes in cross-sections along the panel due to the presence of the embedded boards, classical theories such as the Euler-Bernoulli beam and Kirchhoff-Love plate could not be implemented. Instead, the deflections and maximum failure loads of the composite system under full- and short-span bending tests were measured during their destructive bending testing, and were compared against the mechanical properties of the conventional three-ply CLT panel with the same thickness as the panel with embedded cross-laminations. According to maximum failure loads and deflections, it was concluded that full-span panels with embedded cross-laminations exhibited higher strength and stiffness, whereas short-span panels exhibited higher strength and lower stiffness properties compared to conventional CLT panels.
730

Evaluation of Ohio Coal as Filler Material for Thermoplastic Composites

Phillips, Lakin N. January 2017 (has links)
No description available.

Page generated in 0.0441 seconds