• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1966
  • 1900
  • 365
  • 227
  • 184
  • 146
  • 83
  • 54
  • 53
  • 48
  • 46
  • 38
  • 26
  • 24
  • 24
  • Tagged with
  • 6196
  • 1010
  • 778
  • 721
  • 629
  • 627
  • 616
  • 588
  • 536
  • 506
  • 461
  • 453
  • 400
  • 383
  • 374
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Synthesis Study on Load Capacity of Concrete Slabs without Plans

Gearhart, Gregory P., Jr. 21 September 2018 (has links)
No description available.
732

Prefabricated cage system for reinforcing concrete members

Shamsai, Mohammad 15 March 2006 (has links)
No description available.
733

Create or differentiate? Testing the boundary conditions of differentiation

Osth, Adam F. 15 December 2011 (has links)
No description available.
734

Experimental Investigations of Residual Strength and Repaired Strength of Corrosion Damaged Prestressed Bridge Beams

Alfailakawi, Ali 27 July 2022 (has links)
The durability of infrastructure components, such as prestressed concrete bridge beams, can be significantly affected by long-term deterioration associated with corrosion. Corrosion is a major concern for bridges in Virginia, due to the frequent use of deicing salts during the winter, as well as the number of structures in marine environments. The residual capacity of corrosion damaged prestressed I-beams and box beams needs to be accurately estimated to determine if damaged bridges need to be posted, and to help with making informed decisions related to repair, rehabilitation and replacement of damaged bridges. The initial stage of the research investigated the ability to determine the in-situ strength of members that have visible corrosion-related damage. In this stage, six corrosion-damaged beams were investigated. Prior to testing, the beams were visually inspected and damage was documented. The beams were then tested in the lab to determine their flexural strength. Following testing, samples of strands were removed and tested to determine their tensile properties while cores were taken to determine compressive strength. Powdered concrete samples were removed to perform chloride concentration tests. The tested strengths of the beams were compared to calculated strengths using two methods for damage estimation and two different calculation approaches. Two repair methods were then evaluated through large-scale experimental testing, aimed at restoring the strength of deteriorated prestressed concrete beams. The investigated repairs included External Post-Tensioning (PT) and Carbon Fiber Reinforced Polymer (CFRP) laminates applied to the bottom flange of beams for flexural strengthening. A total of five full-scale bridge members were tested to failure throughout this stage. All beams were subjected to monotonically increasing loads until failure. For beams repaired with external PT, the experimental test was accompanied by a detailed approach for determining the ultimate failure load, the ultimate stress in the external tendons, and the location of the failure. For beams repaired with CFRP, the experimental test was accompanied by a parametric study that was performed to determine the maximum reduction in flexural strength for which CFRP can be considered as a viable repair method to restore the lost capacity. This dissertation provides additional information on estimating the residual capacity of corrosion-damaged beams and shows the types of repair that can restore their original strength. With this information, Departments of Transportation (DOT) can properly determine what types of repair are a suitable for the damaged girders based on their level of corrosion. / Doctor of Philosophy / Many bridges in the United States were built using longitudinal members, called girders, made of prestressed concrete. In prestressed concrete, because concrete cannot resist high tensile forces, tensioned steel cables, called strands, are used to produce compression on the concrete member to improve its behavior when it is in service. Corrosion induces cracks in the concrete superstructure which accelerates the deterioration rate and can result in a partial loss of the concrete body and exposure of the embedded steel. This causes degradation in the load-carrying capacity of the bridge girders which raises a danger to vehicles, passengers, and pedestrians. The residual capacity of corrosion damaged prestressed I-beams and box beams needs to be accurately estimated to determine if damaged bridges need to be posted, and to help with making informed decisions related to repair, rehabilitation and replacement of damaged bridges. The initial stage of the research investigated the ability to determine the in-situ strength of members that have visible corrosion-related damage. In this stage, six corrosion-damaged beams were investigated. Prior to testing, the beams were visually inspected, and damage was documented. The beams were then tested in the lab. Following testing, samples of strands were removed and tested to determine their tensile properties while cores were taken to determine compressive strength. Powdered concrete samples were removed to perform chloride concentration tests. The tested strengths of the beams were compared to calculated strengths. Two repair methods were then evaluated through large-scale experimental testing, aimed at restoring the strength of deteriorated prestressed concrete beams. The investigated repairs included External Post-Tensioning (PT) and Carbon Fiber Reinforced Polymer (CFRP) sheets applied to the bottom of beams for flexural strengthening. A total of five full-scale bridge members were tested to failure throughout this stage. All beams were subjected to monotonically increasing loads until failure. For beams repaired with external PT, the experimental test was accompanied by a detailed approach for determining the ultimate failure load, the ultimate stress in the external tendons, and the location of the failure. For beams repaired with CFRP, the experimental test was accompanied by a parametric study that was performed to determine the maximum reduction in flexural strength for which CFRP can be considered as a viable repair method to restore the lost capacity. This dissertation provides additional information on estimating the residual capacity of corrosion-damaged beams and shows the types of repair that can restore their original strength. With this information, Departments of Transportation (DOT) can properly determine what types of repair are a suitable for the damaged girders based on their level of corrosion.
735

A Comparison between Vector Algorithm and CRSS Algorithms for Indoor Localization using Received Signal Strength

Obeidat, Huthaifa A.N., Dama, Yousif A.S., Abd-Alhameed, Raed, Hu, Yim Fun, Qahwaji, Rami S.R., Noras, James M., Jones, Steven M.R. 09 January 2016 (has links)
No / A comparison is presented between two indoor localization algorithms using received signal strength, namely the vector algorithm and the Comparative Received Signal Strength (CRSS) algorithm. Signal values were obtained using ray tracing software and processed with MATLAB to ascertain the effects on localization accuracy of radio map resolution, number of access points and operating frequency. The vector algorithm outperforms the CRSS algorithm, which suffers from ambiguity, although that can be reduced by using more access points and a higher operating frequency. Ambiguity is worsened by the addition of more reference points. The vector algorithm performance is enhanced by adding more access points and reference points while it degrades with increasing frequency provided that the statistical mean of error increased to about 60 cm for most studied cases. / No full text available. Unable to contact the publisher.
736

A model for predicting narrow tool behavior under dynamic conditions

Swick, W. Christopher January 1984 (has links)
Most models available today for predicting the forces encountered by tillage tools apply to slow moving tools and do not take into account speed effects. However, most tillage operations are performed at speeds in the range of 2-8 km/h, and experimental studies show that tool forces increase significantly with tool speed. This effort of developing a model for predicting the forces on narrow tools under dynamic conditions was carried out in three steps. First, a series of laboratory tests was conducted to determine the effect of shear rate on soil shear strength and soil-metal friction parameters. Second, a model was developed to include dynamic effects. Third, the model was verified experimentally under laboratory conditions. Direct shear tests using a conventional shear box were conducted on an artificial soil at shear rates between 0. 5 and 12 7 cm/min. Experimental results showed that for the soil tested, the angle of internal friction, soil-metal friction angle, cohesion, and adhesion are independent of shear rate. A soil-tillage tool interaction model developed for quasi-static soil failure was modified to include shear rate effects and accelerational force effects. Experimental verification tests for the model were conducted under controlled conditions using an indoor soil bin facility. Tests were conducted with flat tines at speeds from 5. 4 to 120 cm/s. The overall trend was for the model to underpredict the observed total tool force by 16 %. However, the model demonstrated that terms including accelerational force effects can account for a large portion of the increase in tool force observed to occur with an increase in tool speed. / Master of Science
737

Shear Strength Assessment of Corrosion-Damaged Prestressed Concrete Girders

Al Rufaydah, Abdullah Saeed 11 January 2021 (has links)
Corrosion is a concern in old prestressed concrete bridges, especially bridges built in marine environments. Corrosion induces cracks in the concrete superstructure which accelerates the deterioration rate and can result in a complete loss of the concrete cover and exposure of the reinforcing and prestressing steel. This causes degradation in the load-carrying capacity of the bridge girders. Consequently, decisions need to be made on whether to replace, retrofit, or load post these bridges. Extensive research has focused on the flexural strength of corroded prestressed concrete girders. This research studies the shear strength of corroded prestressed concrete girders which can, then, be expanded further to evaluate the possible retrofitting techniques for restoring, or enhancing, their shear strengths. Two old prestressed concrete girders built in the 1960's and 1970's were delivered to the Murray Structural Engineering Laboratory at Virginia Tech from two decommissioned bridges in Virginia. The two girders showed signs of deterioration due to corrosion. Non-destructive testing was performed to evaluate their in-situ conditions. For both girders, each end was tested in the lab in three-point loading condition to make full use of the girders. Shear capacities of the girders were predicted using four methods in the current AASHTO LRFD and the ACI codes. In addition, analysis using Response2000 and strut-and-tie modelling were also carried out. Evaluation of these methods and comparisons with the experimental results were performed to reach to conclusions and recommendations for future work. Corrosion in strands seemed to not have as much influence on the shear capacity as on the flexural capacity. Destructive shear tests indicated that the actual shear capacities of the girders investigated in this research exceeded nominal capacities predicted by the current codes. However, the flexural capacities were reduced. Possible reasons for the girders' behaviors are discussed. / Master of Science / Many bridges in the United States were built using longitudinal members, called girders, made of prestressed concrete. In prestressed concrete, because concrete cannot resist high tensile forces, tensioned steel cables, called strands, are used to produce compression on the concrete member to improve its behavior when it is in service. Corrosion is a concern in old prestressed concrete bridges, especially bridges built in marine environments. Corrosion induces cracks in the concrete superstructure which accelerates the deterioration rate and can result in a partial loss of the concrete body and exposure of the embedded steel. This causes degradation in the load-carrying capacity of the bridge girders which raises a danger to vehicles, passengers, and pedestrians. Consequently, decisions need to be made by authorities on whether to replace, repair, or load post these bridges. Two main types of loads exist in bridge girders, namely shear forces and bending moments. Extensive research has focused on the ability of corroded prestressed concrete girders to resist stresses produced by moment, or flexure. However, bridge girders must also resist shear forces. This research studies the shear strength of corroded prestressed concrete girders which can, then, be expanded further to evaluate the possible retrofitting techniques for restoring, or enhancing, their shear strengths. Two old prestressed concrete girders built in the 1960's and 1970's were delivered to the Murray Structural Engineering Laboratory at Virginia Tech from two decommissioned bridges in Virginia. The two girders showed signs of deterioration due to corrosion. These signs include concrete losses, cracks, areas of unsound concrete, and exposed strands. Non-destructive testing was performed on the girders to evaluate the severity of their in-situ conditions. Then, two destructive full-scale tests were performed on each girder in the lab to estimate their actual shear strengths. Shear strengths of the girders were also predicted using four methods present in the current American Association of State Highway and Transportation Officials, AASHTO, and the American Concrete Institute, ACI, codes. In addition, analyses using other advanced tools were also carried out. Evaluation of these methods and comparisons with the experimental results were performed to reach to conclusions and recommendations for future work. Corrosion in strands seemed to not have as much influence on the shear strength as on the flexural strength. Destructive shear tests indicated that the actual shear strengths of the girders investigated in this research exceeded nominal strengths predicted by the current codes, the AASHTO and the ACI. However, the flexural strengths were reduced. Possible reasons for the girders' behaviors are discussed.
738

Tests on elliptical concrete filled steel tubular (CFST) beams and columns

Ren, Q-X., Han, L-H., Lam, Dennis, Li, W. 04 May 2014 (has links)
No / This paper presents a series of test results of elliptical concrete filled steel tubular (CFST) beams and columns to explore their performance under bending and compression. A total of twenty-six specimens were tested, including eight beams under pure bending and eighteen columns under the combination of bending and compression. The main parameters were the shear span to depth ratio for beams, the slenderness ratio and the load eccentricity for columns. The test results showed that the CFST beams and columns with elliptical sections behaved in ductile manners and were similar to the CFST members with circular sections. Finally, simplified models for predicting the bending strength, the initial and serviceability-level section bending stiffness of the elliptical CFST beams, as well as the axial and eccentric compressive strength of the composite columns were discussed.
739

Shear Strength Behaviour Of Sand-clay Mixtures

Olmez, Mehmet Salih 01 May 2008 (has links) (PDF)
ABSTRACT SHEAR STRENGTH BEHAVIOUR OF SAND - CLAY MIXTURES &Ouml / LMEZ, Mehmet Salih M.S., Department of Civil Engineering Supervisor: Prof. Dr. Mehmet Ufuk ERGUN May 2008, 106 pages A clean sand having about 5 % fines has been mixed with 5 to 40 % commercial kaolin to form different sand-clay soil mixtures. The purpose of making this study is to observe the effects of fraction of fine materials in the soil mixture on the behavior of shear strength. Three series of experiments have been performed throughout the study. Undrained triaxial compression tests (series 1) are performed on specimens taken out from homogeneously mixed soil mixtures at specified kaolin contents consolidated in a box without keeping the mixture under water. In series 2 experiments specimens are taken from a box where soil mixtures are consolidated under water and undrained triaxial compression tests are performed on the samples. Drained direct shear tests are performed on samples prepared without performing initial consolidation in large boxes but directly prepared in the direct shear boxes and consolidated prior to shear (series 3). It has been found that about 20 % kaolin - 80 % sand mixture seems to be a threshold composition and changes in both undrained and drained shear stress-strength behaviour occur afterwards with increasing fine material content.
740

Geomaterial gradation influences on interface shear behavior

Fuggle, Andrew Richard 04 April 2011 (has links)
Particulate materials are ubiquitous in the natural environment and have served throughout human history as one of the basic materials for developing civilizations. In terms of human activity, the handling of particulate materials consumes approximately 10% of all the energy produced on earth. Advances in the study and understanding of particulate materials can thus be expected to have a major impact on society. Geotechnical engineers have a long history of studying particulate materials since the fundamental building blocks of the profession include sands, silts, clays, gravels and ores, all of which are in one form or another particulates. The interface between particulates and other engineered materials is very important in determining the overall behavior of many geotechnical systems. Laboratory experimental studies into interface shear behavior has until now, been largely confined to systems involving uniformly graded sands comprised of a single particle size. This study addresses these potential shortcomings by investigating the behavior of binary particle mixtures in contact with surfaces. The binary nature of the mixtures gives rise to a changing fabric state which in turn can affect the shear strength of the mixture. Accordingly, packing limit states and the shear strength of binary mixtures were investigated across a range of mixtures, varying in particle size ratio and the proportion of fine particles to provide a reference. Binary mixtures in contact with smooth surfaces were investigated from both a global shear response and a contact mechanics perspective. A model was developed that allowed for the prediction of an interface friction coefficient based on fundamental material properties, particle and mixture parameters. Surface roughness changes as a result of shearing were also examined. The interface shear behavior with rough interfaces was examined in the context of the relative roughness between particles and surface features. The interpretation of traditional measures of relative roughness suffer from the need for a definitive average particle size, which is ambiguous in the case of non-uniform mixtures. Measures of an applicable average particle size for binary mixtures were evaluated.

Page generated in 0.034 seconds