• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 12
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 11
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and behavioural adaptations in the large water skater Gerris najas (Degeer) with particular reference to water surface phenomena

Eastwood, Edward Anthony January 1992 (has links)
No description available.
2

Vibrational sum frequency spectroscopic studies and molecular dynamics simulations of water surfaces /

Walker, Dave S., January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 143-150). Also available for download via the World Wide Web; free to University of Oregon users.
3

2D Effects of Geomorphology and Discharge on Hyporheic Exchange—a HEC-RAS Modelling Study / Effekter av geomorfologi och vattenföring på hyporheiskt utbyte—en HEC-RAS-studie i 2D

Preston, Olivia January 2020 (has links)
Hyporheic exchange is an ecologically and biogeochemically essential function of rivers and streams. One important driver of hydrostatic (hyporheic) exchange is gra- dients in the hydrostatic hydraulic head at the streambed. This thesis investigates the impact of discharge on hydrostatic exchange in two stream reaches in Uppland, Sweden, with different geomorphological characteristics. By comparing 1D approx- imations of hydrostatic head variations along different longitudinal profiles across the streams, the use of a 2D hydraulic model for defining such variations is evaluated. Channel topography and discharge data have been obtained through field surveys in the two streams and form the basis for the setup of two HEC-RAS 2D models. The models have been calibrated against stream-depth measurements, validated against stream depth and stream velocity, and used for simulation of a range of discharges in both reaches. Water surface elevations, obtained for the different discharges in three profiles along each reach, have been used as input in a spectral model evaluating flow across streambed area; average hyporheic exchange velocity W. The results show that W , and thereby the hydrostatic exchange, decreases with increasing dis- charge and varies between different longitudinal profiles in the reach with the most complex geomorphology. For the reach with simpler geomorphology, the effects of discharge, as well as variations across the streams, are negligible. This implies that a 1D approximation of the hydrostatic head variations at the streambed can be sat- isfactory for a stream with simple geomorphology, whereas a 2D evaluation is more accurate for a stream with a complex geomorphology. / Denna uppsats handlar om hur ett vattendrags geomorfologi (form och geologi) och vattenföring påverkar hyporheiskt utbyte. Hyporheiskt utbyte är en process där ytvat- ten tränger igenom vattendragets botten, flödar i den så kallade hyporheiska zonen och blandas med grundvatten för att sedan återvända till vattendraget. Det är en vik- tig funktion på grund av dess påverkan på ekologi och biogeokemiska reaktioner, exempelvis genom syresättning av botten. Hyporheiskt utbyte påverkas bland annat av variationer i vattnets energinivå (hydrau- lisk tryckhöjd) vid bottnen. Den hydrauliska tryckhöjden varierar med vattenytans höjd, som är summan av bottnens topografi och vattnets djup. Målet med studien var att undersöka vattenföringens påverkan på hydrostatiskt, hyporheiskt utbyte i två vattendrag med olika geomorfologiska egenskaper. Endimensionella (1D) approx- imationer av hydraulisk tryckhöjd används ibland vid modellering av hyporheiskt utbyte. Därför var ytterligare ett mål att utvärdera flera endimensionella (1D) ap- proximationer av hydraulisk tryckhöjd vid botten, för att på så sätt undersöka om tvådimensionell (2D) modellering tillför mer information. För att uppnå målen genomfördes fältstudier vid två vattendrag i Uppland, vid vilka topografimätningar och spårämnesförsök gjordes. Dessa lade grunden för uppbygg- nad av 2D-modeller över vattendragen i modelleringsverktyget HEC-RAS. Model- lerna kalibrerades mot uppmätta djupdata och användes sedan för simulering av ett antal olika vattenföringar. Longitudinella profiler placerades i mitten samt till vänster respektive höger om mitten i vattendragen. Längs dessa profiler, för de olika vatten- föringarna, erhölls vattenytans höjd, som blev indata till en spektral modell. Utifrån topografi och vattenytans höjd längs en profil beskriver den spektrala modellen hur den hydrauliska trycknivån varierar med hjälp av en Fourier-serie. Den spektrala modellen beräknar det hyporheiska utbytets medelhastighet W , vil- ken är ett mått på hur stor volym vatten som genomtränger bottenarea per tid. Re- sultaten visar att för vattendraget med mest komplex geomorfologi minskar W med ökande vattenföring, och W varierar också mellan de olika longitudinella profilerna. För det andra vattendraget, som har en enklare geomorfologi, syns inga betydande skillnader, varken mellan olika vattenföringar eller profiler. Därutöver är W mind- re för vattendraget med enklare geomorfologi jämfört med vattendraget med kom- plex geomorfologi. Resultaten antyder därmed att 1D-approximationer av hydraulisk tryckhöjd vid bottnen är tillräckliga för vattendrag med enkel geomorfologi, medan 2D-modellering tillför information för ett vattendrag med komplex geomorfologi.
4

Use of in-stream water quality measurements and geospatial parameters to predict consumer surfactant toxic units in the upper Trinity River watershed, Texas

Johnson, David Richard. Venables, Barney J., January 2008 (has links)
Thesis (M.S.)--University of North Texas, May, 2008. / Title from title page display. Includes bibliographical references.
5

Piranha: An Autonomous Water Surface Robot.

Liu, Xiahua January 2021 (has links)
No description available.
6

Up-scaling hydrological processes and the development of a large-scale river basin modelling system

Sloan, William Taylor January 1999 (has links)
No description available.
7

An investigation of the mechanisms of wind generated surface waves

Janajrah, Ma'moun Ali Mohammad January 2010 (has links)
The goal of wind-waves research is to predict the waves field and its effect on the environment. That environment could be natural or imposed by human endeavour. The mechanism of wind generated waves is described in the present work as a wind-bulk flow interaction rather than as a mechanical process which only transfers the wind energy to the wave. In the light of this description, the generation and growth of surface waves are functions of the physical properties of the interface, density of the bulk flow perturbations and wind shear stress. While the present models for the prediction of surface growth and evolution show some consistence - in some cases - with observations that were conducted in laboratories and in real fields, the work presented in this thesis justifies and explains the inconsistency or contradictions in other cases between the observations and the predictions. Also, physical interpretations for observations, for example wave growth with fetch, are suggested in the present work. To illustrate the physical mechanism responsible for wave generation and growth under the effect of wind action, two approaches are used. The first involves studying the effect of the physical properties of the water surface on atmospheric input into the bulk and thus the effect on the formation and growth of capillary waves. The second involves studying the correlation between the wave formation and growth and the density of the bulk perturbations. Wide ranges of previous data are used to analyse the effect of the physical properties of the water surface on wave generation and growth mechanism for the first approach. Also, a group of experiments using the PIV system (Particle Image Velocimetry) were conducted to study the correlation between the wind speed, bulk flow evolution and wind-waves‟ generation and growth for the second approach. The main physical parameters which are responsible for the generation and growth of capillary waves are determined. The Ohnesorge number is modified to predict the generation and growth of surface waves. In the second part, additional physical parameters of the bulk flow are introduced to illustrate the correlation between the wind generated waves and bulk flow evolution. A new parameter is used to scale the transition of the bulk flow from laminar flow to turbulent flow or the transition of the water surface from an undisturbed surface to a fully disturbed surface. The history of wind-wave research is relatively short. Although there were basic developments in the 18th century, a concentrated effort really began as a result of the military imperative of the Second World War. These developments were however, largely empirical. A theoretical frame work began to develop with the studies of wind-wave generation in the last century. The present work is conducted to fill some gaps in wind generated surface waves research and to introduce new approaches to simplify understanding wind-waves field and its effect on the environment.
8

Non-darcian Flow Through Rockfills

Kureksiz, Ozge 01 August 2008 (has links) (PDF)
An impermeable weir constructed across a stream prevents the longitudinal movement of aquatic life and transportation of physical and chemical substances in water, eventually having a negative impact on river environment. However, a rubble mound weir is considered environmentally friendly, since its permeability allows the streamwise migration of aquatic life. This thesis investigates the performance of this type of weir as a water use facility. The particular objective of the investigation is to study the flow mechanism in terms of water surface profile and discharge through the weir. In the study, flow through the rubble mound weir is considered non-Darcian, steady, and one-dimensional. In the analysis, gradually varied open channel flow algorithm is applied to porous medium flow through the rubble mound weir in which laminar and turbulent components of flow are taken into consideration. Unlike previous studies where Stephenson and Wilkins relations were used, in this thesis Forchheimer equation is used. To verify the validity of numerical solution of governing equation based on Forchheimer relation, an experimental investigation is conducted in the laboratory. The experimentally obtained water surface profiles are compared with the numerical results. It is observed that there is a satisfactory agreement between numerical and experimental results. The water surface profiles obtained by numerical solution are further compared with those based on Stephenson and Wilkins relations. It is concluded that the proposed numerical solution technique for the Forchheimer based governing equation may be used in the analysis of flow through, and design of rockfill weirs.
9

Point cloud classification for water surface identification in Lidar datasets

Sangireddy, Harish 07 July 2011 (has links)
Light Detection and Ranging (Lidar) is a remote sensing technique that provides high resolution range measurements between the laser scanner and Earth’s topography. These range measurements are mapped as 3D point cloud with high accuracy (< 0.1 meters). Depending on the geometry of the illuminated surfaces on earth one or more backscattered echoes are recorded for every pulse emitted by the laser scanner. Lidar has the advantage of being able to create elevation surfaces in 3D, while also having information about the intensity of the returned pulse at each point, thus it can be treated as a spatial and as a spectral data system. The 3D elevation attributes of Lidar data are used in this study to identify possible water surface points quickly and efficiently. The approach incorporates the use of Laplacian curvature computed via wavelets where the wavelets are the first and second order derivatives of a Gaussian kernel. In computer science, a kd-tree is a space-partitioning data structure used for organizing points in a k dimensional space. The 3D point cloud is segmented by using a kd-tree and following this segmentation the neighborhood of each point is identified and Laplacian curvature is computed at each point record. A combination of positive curvature values and elevation measures is used to determine the threshold for identifying possible water surface points in the point cloud. The efficiency and accurate localization of the extracted water surface points are demonstrated by using the Lidar data for Williamson County in Texas. Six different test sites are identified and the results are compared against high resolution imagery. The resulting point features mapped accurately on streams and other water surfaces in the test sites. The combination of curvature and elevation filtering allowed the procedure to omit roads and bridges in the test sites and only identify points that belonged to streams, small ponds and floodplains. This procedure shows the capability of Lidar data for water surface mapping thus providing valuable datasets for a number of applications in geomorphology, hydrology and hydraulics. / text
10

ANION EXCHANGE RESIN TECHNOLOGY FOR NATURAL ORGANIC MATTER REMOVAL FROM SURFACE WATER

Anderson, Lindsay 26 November 2013 (has links)
Natural organic matter (NOM) is present in all surface waters as a result of decaying vegetation, biological activity, and organic soil. Alternative NOM removal processes such as anion exchange resins (AERs) have shown NOM removals typically ranging between 50 to 90%, with up to 99% removal achieved in some cases. The first portion of this study evaluated the performance of two AERs; a conventional Type 1 AER and magnetic ion exchange resin (i.e. MIEX®) for NOM removal from surface water quantified by UV254, dissolved organic carbon (DOC), and specific UV absorbance (SUVA). Samples were also characterized for chloride, sulphate, and chloride-to-sulphate mass ratio (CSMR) to provide additional information on water quality characteristics of AER treated waters. Overall, the results showed that both AERS were effective for removing NOM. However, the MIEX® resin provided greater removal of NOM with shorter contact times compared to the conventional resin investigated. Water treated with MIEX® resin showed significantly higher chloride and lower sulphate concentrations than the conventional AER. Higher CSMR values were found with MIEX® treated water compared to conventional AER system, although both resins showed CSMR much greater than 0.5, which can increase galvanic corrosion effects with lead. Bench-scale jar tests were conducted to investigate the impact of temperature on the efficacy of three NOM removal treatment technologies; enhanced coagulation with alum, MIEX® and a combined MIEX® treatment followed by coagulation with a low dose of alum. Higher settled water turbidity was observed during cold water operating conditions for all three processes. At cold-water operating conditions, DOC removal was reduced with combined MIEX® -Alum treatment, and UV254 removal was impacted for both MIEX® and MIEX® -Alum processes. The combined MIEX®-Alum process was found to provide the lowest THMFP and HAAFP at both temperatures to concentrations lower than current regulatory maximum acceptable concentration (MAC) guidelines in Canada. Surface charge analysis experiments were performed at bench-scale using synthetic water containing humic acid to determine the relationship between NOM and the charge of AER-treated waters. Further bench and pilot-scale studies were performed to investigate the use of surface charge measurements to monitor and optimize NOM removal during treatment with AER systems. Strong correlations were observed between UV254 and respective charge measurements (i.e. ZP, SC) of AER-treated synthetic and raw waters. The results of this research has shown that it is possible to use charge to optimize the MIEX® process for NOM removal. Additionally, it was found that SC measurements could be used as an operational tool for AER processes, where deviations in SC from optimum treatment would indicate the requirement for fresh resin addition or resin regeneration.

Page generated in 0.077 seconds