• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1146
  • 177
  • 168
  • 106
  • 78
  • 67
  • 48
  • 42
  • 18
  • 17
  • 17
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 2344
  • 427
  • 318
  • 309
  • 303
  • 270
  • 270
  • 262
  • 209
  • 180
  • 179
  • 153
  • 136
  • 133
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Factor analysis : theory and applications to evolutionary problems in chemometrics

Elbergali, Abdalla Kh January 1995 (has links)
No description available.
362

STUDY OF PORE SIZE EFFECT IN CHROMATOGRAPHY BY VIBRATIONAL SPECTROSCOPY AND COLLOIDAL ARRAYS

Huang, Yuan January 2008 (has links)
Current study of separation mechanism in chromatography heavily relies on the measurement of macroscopic properties, such as retention time and peak width. This dissertation describes the vibrational spectroscopy characterization of separation processes.Raman Spectroscopic characterization of a silica-based, strong anion exchange stationary phase in concentrated aqueous solutions is presented. Spectral response of stationary phase quaternary amine is closely related to changes in interaction between counter anions and the amine functional groups as the result of anion hydration. The molecular-level information obtained will provide useful guidance for control of stationary phase selectivity.To study the effects of stationary phase pore size on separations processes, monodisperse silica particles in the sub-100 nm range are prepared and self-assembled to well-ordered, three-dimensional colloidal arrays. A modified LaMer model is proposed and demonstrated for optimization of reaction conditions that lead to uniform and spherical silica particles. This approach greatly reduces the number of training experiments required for optimization. Fast Fourier transformation of colloidal array scanning electron microscopy images indicates closely-packed hexagonal packing patterns.Using these arrays, a novel system for the measurement of molecular diffusion coefficients in nanopores is reported. This system consists of an ordered colloidal array with well-defined pore structure deposited onto an internal reflection element for in-sit collection of kinetic information by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). A mathematical model is established to extract diffusion coefficients from these data. A decrease of approximately eight orders of magnitude in molecular diffusion coefficients is observed for molecular transport in nanopores.Finally, by using this colloidal array-ATR-FTIR system and the corresponding mathematical models that describe absorption in the colloidal array, the distribution in the nanopores of the acetonitrile organic modifier in an aqueous mobile phase solvent system is determined. Based on the results of 50 nm colloidal arrays, pore surface properties have a strong effect on the distribution of organic molecules from bulk solution to the pores.
363

On the configuration of arrays of floating wave energy converters

Child, Benjamin Frederick Martin January 2011 (has links)
In this thesis, certain issues relating to a number of wave energy absorbers operating in the same vicinity are investigated. Specifically, arrangements of the devices within such an array are sought, such that beneficial hydrodynamic interference between members is exploited and unwanted effects mitigated. Arrays of `point absorber' devices as well as converters with multiple closely spaced floats are modelled and a frequency domain hydrodynamic solution derived. This is implemented as efficient computer code, capable of producing the full linear wave theory solution to any desired degree of accuracy. Furthermore, the results are verified against output from the boundary element code WAMIT. Initially, detailed analysis of an isolated absorber is conducted, with motion responses, forces, power output and velocity potentials at the free surface computed for a range of different device specifications. Elementary examples of arrays are then used to demonstrate the influence of factors such as device separation, wave heading angle, number of devices and array configuration upon collective performance. Subsequently, the power output from an array of five devices is optimised with respect to its layout, using two different routines. The first is a new heuristic approach, named the Parabolic Intersection (PI) method, that efficiently creates array con figurations using only basic computations. The second is a Genetic Algorithm (GA) with a novel `crossover' operator. Each method is applied to maximise the output at a given regular wave frequency and direction under two different power take-off regimes and also to minimise power in a third, cautionary example. The resulting arrays are then analysed and the optimisation procedures themselves evaluated. Finally, the effects of irregular seas on array interactions are investigated. The configurations that were optimised for regular wave climates are assessed in a range of irregular sea-states. The GA is then used once more to create optimal array layouts for each of these seas. The characteristics of the arrays are subsequently examined and the influence of certain spectral parameters on the optimal solutions considered. The optimisation procedures were both found to be effective, with the GA marginally outperforming the PI method in all cases. Significant positive and negative modifications to the power output were observed in the arrays optimised in regular waves, although the effects weakened when the same arrays were subjected to irregular sea-states. However, arrays optimised specifically in irregular seas exhibited differences in net power output equivalent to over half that produced from the same number of devices in isolation.
364

High Speed Digital Data Inputs for Thermal Array Chart Recorders

Gaskill, David M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Many telemetry stations would like to convert from using digital-to analog converters (DAC's) to using direct digital inputs to their chart recorders but can't find a suitable recorder interface. These stations often have hundreds or even thousands of channels of information being bussed around at very high speeds on propriatary real-time computer systems. The lack of standardization has naturally presented recorder manufacturers with problems in selecting the appropriate interface hardware. Standard parallel interfaces, such as SCSI and GPIB, are usually too slow and not really suited for real-time transfer, although they can be used in some circumstances which will be described. The best choice seems to be a general purpose parallel port of at least 16 data bits which can support a large number of addresses. Such an interface can be used with a high speed network like SCRAMNet as well as with a general purpose computer or workstation. This paper will describe several available parallel ports using both TTL and RS-485 (long-line) hardware and some practical implementations of thermal array recorder use with SCRAMNet, GPIB, and general purpose parallel busses.
365

In-situ comparison of thermal measurement technologies for interpretation of PV module temperature de-rating effects

Elwood, Teri, Bennett, Whit, Lai, Teh, Simmons-Potter, Kelly 26 September 2016 (has links)
It is well known that the efficiency of a photovoltaic (PV) module is strongly impacted by its temperature such that higher temperatures lead to lower energy conversion efficiencies. An accurate measurement of the temperature de-rating effect, therefore, is vital to the correct interpretation of PV module performance under varied environmental conditions. The current work investigates and compares methods for performing measurements of module temperature both in the lab and in field-test environments. A comparison of several temperature measurement devices was made in order to establish the ideal sensor configuration for quantifying module operating temperature. Sensors were also placed in various locations along a string of up to eight photovoltaic modules to examine the variance in operating temperature with position in the string and within a larger array of strings.
366

Power losses and thermal modeling of a voltage source inverter

Oberdorf, Michael Craig. 03 1900 (has links)
This thesis presents thermal and power loss models of a three phase IGBT voltage source inverter used in the design of the 625KW fuel cell and reformer demonstration which is a top priority for the Office of Naval Research. The ability to generate thermal simulations of systems and to accurately predict a system's response becomes essential in order to reduce the cost of design and production, increase reliability, quantify the accuracy of the estimated thermal impedance of an IGBT module, predict the maximum switching frequency without violating thermal limits, predict the time to shutdown on a loss of coolant casualty, and quantify the characteristics of the heat-sink needed to dissipate the heat under worst case conditions. In order to accomplish this, power loss and thermal models were created and simulated to represent a three phase IGBT voltage source inverter in the lab. The simulated power loss and thermal model data were compared against the experimental data of a three phase voltage source inverter set up in the Naval Postgraduate School power systems laboratory.
367

Design of multiple-valued programmable logic arrays

Ko, Yong Ha 12 1900 (has links)
Approved for public release; distribution is unlimited / The goal of this thesis is the development of a programmable logic array (PLA) that accepts multiple-valued inputs and produces multiple valued outputs. The PLA is implemented in CMOS and multiple levels are encoded as current. It is programmed by choosing transistor geometries which control the current level at which the PLA reacts to inputs. An example of a 4-valued PLA is shown. As part of this research, a C program was written that produces a PLA layout. / http://archive.org/details/designofmultiple00koyo / Major, Republic of Korea Air Force
368

Biomarkers of anti-angiogenic therapy in breast cancer

Mehta, Shaveta January 2014 (has links)
The hunt for biomarkers for anti-VEGF agent bevacizumab is ongoing since last decade with no success. Identifying robust biomarkers for stratifying patients and for monitoring response is important for the future use of bevacizumab in breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) analysis and genome wide gene expression analysis are two promising approaches to understand the molecular mechanisms and search for biomarker of anti-angiogenic therapy. Firstly, with the retrospective pilot study, a close link between DCE-MRI findings and the molecular mechanisms assisting cancer survival and metastasis was established. Secondly, the prospective window of opportunity study conducted using single cycle of bevacizumab given before neoadjuvant chemotherapy and by performing detailed pharmacodynamic analyses with DCE-MRI and gene expression before and two weeks after bevacizumab had shown a wide variation in responses to bevacizmab both at genomic and imaging level. A close link between changes in DCE-MRI and the changes in gene expression profile was further established suggesting DCE-MRI has potential to serve as non-invasive biomarkers of antiangiogenic therapy. Tumours with high baseline values of forward transfer constant K<sup>trans</sup> showed the maximum response as assessed by DCE-MRI after bevacizumab. By performing biopsy after single cycle of bevacizumab, the changes in genes related to immune response, metabolism and cell signalling were observed that gives a useful insight into mechanisms governing response and resistance to bevacizumab. Also the certain gene expression changes observed with post bevacizumab biopsies, such as down regulation of endothelial cell specific molecule-1 (ESM1), cyclin E1 (CCNE1) and up regulation of pyruvate dehydrogenase kinase 1 (PDK1), cyclic GMP-inhibited phosphodiesterase B (PDE3B) could be helpful in decision-making about future therapy with bevacizumab at an early stage. This study has suggested that using bevacizumab in combination with other targeted agents could overcome resistance.
369

Array Processing Techniques for Broadband Acoustic Beamforming

Thiel, Ryan 20 May 2005 (has links)
Audio acquisition and recording can benefit from directional reception of the acoustic signals. Current acoustic designs of highly-directional microphones are bandwidth limited and physically large. A microphone array used in conjunction with a beamforming algorithm can acquire and spatially filter the signal, but traditionally this has suffered from limitations similar to those of the purely acoustic designs. The work presented in this paper attempts to overcome these limitations by producing and analyzing three atypical techniques for broadband beamforming. The last and most successful technique employs an algorithm which calculates the difference in group delay of the acquired signals and uses that information to determine the direction of the incoming signals as a function of frequency.
370

Selbstkalibrierende Verfahren in der parallelen Magnetresonanztomographie / Self-calibrating methods for parallel magnetic resonance imaging

Blaimer, Martin January 2005 (has links) (PDF)
In der klinischen Magnetresonanztomographie (MRT) spielt neben dem Bildkontrast und der räumlichen Auflösung, die Messzeit eine sehr wichtige Rolle. Auf Grund schneller Bildgebungsmethoden und technischer Fortschritte in der Geräteentwicklung konnten die Aufnahmezeiten bis auf wenige Sekunden reduziert werden. Somit wurde die MRT zu einem der wichtigsten Verfahren in der klinischen Diagnostik. Der größte Fortschritt für eine weitere Verkürzung der Aufnahmezeiten erfolgte durch die Einführung von Partiell-Parallelen-Akquisitions (PPA) Techniken in den späten 1990er Jahren. Inzwischen sind PPA-Verfahren etabliert und stehen auch für den Einsatz im klinischen Alltag zur Verfügung. Die Grundlage aller PPA-Verfahren bildet eine Anordnung von mehreren Empfangsdetektoren, welche gleichzeitig und unabhängig voneinander ein Objekt abbilden. Das Signal jedes einzelnen Detektors enthält dabei je nach Position eine gewisse räumliche Information. Eine Messzeitverkürzung wird im Allgemeinen dadurch erzielt, dass die Menge der aufzunehmenden Daten reduziert wird. Dies führt zu Fehler behafteten Bildern auf Grund von fehlenden Daten. Alle gängigen PPA-Verfahren benutzen die in der Detektoranordnung inhärente räumliche Information, um mit geeigneten Algorithmen die Fehler behafteten Bilder zu korrigieren. Die beiden erfolgreichsten Ansätze stellen momentan das "Sensitivity Encoding" (SENSE) Verfahren und die "Generalized Autocalibrating Partially Parallel Acquisitions" (GRAPPA) Methode dar. Die Leistungsfähigkeit von PPA-Methoden ist allerdings beschränkt. Zunächst begrenzt die Anzahl der Einzeldetektoren den maximal erreichbaren Messzeitgewinn. Weiterhin führt der Einsatz von PPA-Verfahren zu einer Verringerung des Signal-zu-Rausch-Verhältnis (englisch: signal-to-noise ratio, SNR). Im Allgemeinen ist das SNR um den Faktor der Wurzel des Beschleunigungsfaktors verringert. Ein zusätzlicher SNR-Verlust entsteht durch den Rekonstruktionsprozess und ist stark abhängig von der geometrischen Anordnung der Detektoren. Auf Grund dieser Verluste ist der Einsatz von PPA-Methoden auf Applikationen mit bereits hohem intrinsischen SNR beschränkt. In dieser Arbeit werden Erweiterungen von PPA-Verfahren vorgestellt, um deren Leistungsfähigkeit weiter zu verbessern. Der Schwerpunkt liegt dabei auf der selbstkalibrierenden GRAPPA-Methode, welche die fehlenden Daten im reziproken Bildraum, dem so genannten k-Raum, rekonstruiert. Zunächst wird der Einsatz von GRAPPA für die 3D-Bildgebung beschrieben. In der 3D-Bildgebung ist es für die Rekonstruktionsqualität von PPA-Methoden vorteilhaft, die Daten entlang zweier Raumrichtungen zu reduzieren. GRAPPA war bisher auf Experimente mit Datenrekonstruktion in nur einer Richtung beschränkt. Es wird gezeigt, dass sich durch Kombination mit SENSE der Vorteil einer zwei-dimensionalen Datenreduktion erstmals auch für GRAPPA benutzen lässt. Weiterhin wird eine Neuformulierung der GRAPPA-Rekonstruktion als Matrixoperation vorgestellt. Dieser Formalismus wird als GRAPPA-Operator Formalismus bezeichnet und erlaubt es, ein gemessenes Signal im k-Raum zu verschieben, um fehlende Daten zu rekonstruieren. Eigenschaften und Beziehungen zwischen unterschiedlichen Verschiebungen werden beschrieben und daraus resultierende Anwendungen für die 2D- und 3D-Bildgebung präsentiert. Im Allgemeinen arbeiten alle konventionellen PPA-Verfahren ausschließlich auf der Rekonstruktionsseite. Somit ist die Bildqualität und damit der erzielbare Messzeitgewinn nur durch die Geometrie der Detektoranordnung beeinflussbar. In der Mehrschicht-MRT lässt sich diese Abhängigkeit von der Detektoranordnung reduzieren, indem Bildartefakte bereits während der Datenaufnahme gezielt verändert werden. Auf diese Weise kann der SNR-Verlust aufgrund des Rekonstruktionsprozesses minimiert werden. Dieses Konzept der kontrollierten Einfaltungen (englisch: Controlled Aliasing in Parallel Imaging Results in Higher Acceleration, CAIPIRINHA) wird für den Einsatz in der dynamischen Herzbildgebung vorgestellt. Bei geringen Beschleunigungsfaktoren kann mit CAIPIRINHA im Gegensatz zu den üblichen PPA-Verfahren eine Bildqualität erzielt werden, welche keine signifikanten Einbußen gegenüber konventionellen Experimenten aufweist. / In clinical magnetic resonance imaging (MRI) applications, scan time plays an important role. Due to the introduction of fast imaging sequences and hardware developments, acquisition times have been reduced to the order of several seconds and for this reason, MRI has become one of the most important techniques in clinical diagnosis. The greatest improvement in further reducing the acquisition times has been the development of partially parallel acquisition (PPA) strategies in the late 1990s. Today, PPA strategies have become established and are available for clinical routine examinations. The basis for all PPA methods is an array of mutiple detectors which allow the independent and simultaneous imaging of an object. According to its position, each detector receives signal predominantly from a localized region and therefore contains spatial information. In general, a scan time reduction is achieved by reducing the amount of acquired data. This results in imaging artifacts. PPA methods utilize the spatial information inherent in the detector array in order to remove these artifacts by using dedicated reconstruction algorithms. At present, the most successful PPA strategies are the "Sensitivity Encoding" (SENSE) method and the "Generalized Autocalibrating Partially Parallel Acquisitions" (GRAPPA) technique. However, the performance of PPA methods is limited. First, the achievable scan time reduction factor is limited by the number of detectors in the array. Second, compared with a conventional experiment the signal-to-noise ratio (SNR) is decreased by the square root of the scan time reduction factor. An additional decrease in SNR is introduced by the reconstruction process and is strongly dependent on the array geometry. For these reasons, the application of PPA methods is restricted to applications with a high intrinsic SNR. In this thesis, extensions of standard PPA methods are presented which improve their performance. Special emphasis is put on the autocalibrating GRAPPA technique, which reconstructs missing data in the reciprocal image space, the so-called k-space. First, the application of GRAPPA for 3D imaging is desribed. In 3D imaging, it is advantageous for the reconstruction quality of PPA methods to perform the data reduction in two spatial dimensions. However, until now GRAPPA has been restricted to experiments with data reduction in only one dimension. Here, a combination of GRAPPA and SENSE is presented which allows one to utilize the benefits of two-dimensional data reduction for the GRAPPA technique. Furthermore, a reformulation of the GRAPPA reconstruction process as a matrix operation is presented. This formalism is refered to as the GRAPPA-Operator formalism and it allows one to shift a received signal in k-space in order to reconstruct missing data. Several properties and relationships between different shifts are described and resultant implications for 2D and 3D imaging are presented. In general, all conventional PPA methods work on the reconstruction side. Therefore,the image quality and thus the achievable scan time reduction can only be controlled by the choice of the array geometry. In multi-slice MRI, this dependency on the array geometry can be reduced by modifying the appearence of imaging artifacts during the data acquisition period. In this way, the decrease in SNR introduced by the reconstruction process can be minimized. This concept is entitled "Controlled Aliasing in Parallel Imaging Results In Higher Acceleratrion" (CAIPIRINHA), and in this thesis its application for dynamic cardiac imaging is described. In contrast to previous PPA techniques with two-fold acceleration, the image quality using the CAIPIRINHA approach is not significantly decreased compared with conventional experiments.

Page generated in 0.0343 seconds