1 |
Präparation und Charakterisierung nanostrukturierter Magnetwerkstoffe unter besonderer Berücksichtigung des Exchange Bias EffektsSchletter, Herbert 27 February 2014 (has links) (PDF)
Der Einsatz nanostrukturierter Magnetmaterialien als Speicherschichten in Festplatten stellt ein vielversprechendes Konzept zur weiteren Erhöhung der erreichbaren Speicherdichten im Vergleich zu den heute eingesetzten granularen Medien dar. Für die Realisierung dieses Konzeptes ist eine detaillierte Kenntnis der Struktureigenschaften und deren Einfluss auf das magnetische Verhalten der einzusetzenden Schichten erforderlich. Für die vorliegende Arbeit wurden drei verschiedene magnetische Materialien ausgewählt und insbesondere mit elektronenmikroskopischen Methoden in struktureller Hinsicht untersucht. Dazu zählen ferromagnetische (FePt)(100-x)Cu(x) -Schichten, ferromagnetische [Co/Pt]n -Multilagen sowie ferrimagnetische Fe(100-x)Tb(x) -Schichten.
Der Schwerpunkt der Untersuchungen lag dabei auf der Korrelation zwischen strukturellen und magnetischen Eigenschaften sowie im Einfluss der Nanostrukturierung auf das magnetische Verhalten der Schichten. In dieser Hinsicht wurden Aspekte der durch die Struktur bedingten magnetischen Anisotropie in Form von magnetokristalliner und Grenzflächenanisotropie betrachtet. Zudem wurde das Kopplungsverhalten zwischen einzelnen Strukturelementen in nanostrukturierten Schichten untersucht.
Aufbauend auf die Untersuchung der drei genannten Materialien wurden [Co/Pt]n und Fe(100-x)Tb(x) ausgewählt zum Aufbau eines Systems mit zwei magnetischen Komponenten: Fe(80)Tb(20) / [Co/Pt]10. Die Untersuchungen konzentrierten sich dabei auf die Morphologie der Grenzfläche zwischen den beiden Bestandteilen und deren Einfluss auf den Exchange Bias, der in diesem System vorliegt.
|
2 |
Spin Hall Effect Mediated Current Induced Magnetization Reversal in Perpendicularly Magnetized Pt/Co/Pt Based SystemsVineeth Mohanan, P January 2016 (has links) (PDF)
In the present thesis, magnetization reversal in both out-of-plane and in-plane magnetized thin lms and in devices fabricated out of those lms are explored. Pt/Co/Pt stacks with ultrathin Co layer were in-estimated initially for understanding their magnetic properties in this thesis. These perpendicular magnetized systems are good candidates for magnetic hard disc drives due to their large anisotropy, which may allow miniaturization of magnetic data storage devices. The spin Hall e ect mediated current-induced magnetization reversal in patterned Pt/Co/Pt devices were extensively investigated. Investigation of the magnetization reversal by means of a current instead of a magnetic eld is necessary to explore the possibilities of solid state magnetic memory devices. This is the primary motivation behind the investigation of current-induced magnetization reversal in Pt/Co/Pt system, in this thesis. Another important proposal for magnetic data storage is the race track memory, where the domain walls separating magnetic domains (in in-plane or out-of-plane magnetized materials) are moved by using a current. This involves a great deal of understanding of the domain wall motion in Nano-conduits under applied magnetics ends, and currents and also its interaction with engineered geometrical features. In this thesis work, magnetic led-driven domain wall pinning and deepening experiments on in-plane magnetized nanowires of perm alloy were performed to un-distend this interaction and the e act of domain wall chirality.
In chapter 1, a general introduction to di errant data storage technologies and the current progress in the leg of spintronic is presented. This will highlight a perspective of this thesis work with respect to the present day research in spintronic and magnetization reversal studies.
In chapter 2, a basic background of magnetism using the micromag-netic framework is illustrated. A brief introduction to magnetic domain walls is also presented. The Landau-Lifshitz-Gilbert dynamical equation is discussed and some case studies applied to a single domain particle with uniaxial anisotropy under the effect of spin-orbit torque are illu trated. The basics of spin-orbit coupling leading to spin Hall e ect is also explain
In chapter 3, most of the essential experimental tools along with their basic working principles are described. Extensive e orts have been in-vested in designing and building the experimental tools. These include custom designs of a sputter deposition system, an ultra-high vacuum chamber for pulsed laser ablation, a magneto-optic Kerr e ect magne-tometer, a Kerr imaging system and a magneto-transport setup. All of these experimental setups have been automated, details of which are brie y discussed in this chapter. The Kerr imaging system was designed to measure hysteresis loops, observe domain wall motion and to measure domain wall velocity under applied magnetic elds and electric current. The magneto-transport setup was used for studying the domain wall pinning and depinning experiments in permalloy nanowires.
In chapter 4, the optimization process for obtaining perpendicular mag-netic anisotropy in Pt/Co/Pt lms is described. The spin reorientation transition with varying thickness of Co (from 1.5 nm down to 0.35 nm) was studied. The magnetization easy axis direction changes from in-plane to out-of-plane as the thickness of Co is reduced. The dependence of Curie temperatures of ultrathin Co lms, with thickness as low as 0.35 nm, on the underlayer Pt thickness and its crystallinity was studied in detail. The e act of Ta but err layer on the texture of the Pt lm, and on the Curie temperature of the Pt/Co/Pt system was evaluated. To gain further insight of the role of the bottom Pt/Co and the top Co/Pt interfaces, ultrathin Cu lbs were inserted at the respective interfaces, and the anisotropy and magnetization reversal behaviour of these lbs were investigated.
In chapter 5, studies on current-induced magnetization reversal in mi-corn sized wires of Pt/Co/Pt trilete is presented. The spin Hall e act assisted spin-orbit torque was used to reversibly switch the magnetization of these devices with and without the help of an external magnetic led. Since both the top and bottom layers are Pt, any contribution from Rashia e act towards spin-orbit torque could be ignored. By preparing devices with unequal top and bottom Pt thicknesses, a net spin-orbit torque could be applied to the magnetization of the Co layer. The thickness gradient/induced anisotropy in the Co layer was utilized to experimentally investigate current-induced deterministic switching. Sin-gel domain simulations with spin-orbit torque were also carried out to understand the mechanism of deterministic switching of magnetization in Pt/Co/Pt devices. This study is expected to have made sign cant contributions and to open up the possibilities of further investigation in the studies of spin-orbit torque in Pt/Co/Pt systems for solid state magnetic memory devices.
In chapter 6, magnetic led-induced reversal in systems with in-plane magnetic anisotropy is presented. Here the e act of the width of a Nanos-trip on the anisotropy of a soft magnetic material like perm alloy was in-estimated. By introducing a nucleation pad to one end of the perm alloy nanowire, a single domain wall was generated at the junction with apple-cation of a proper magnetic led sequence. This domain wall could be in-jested into the nanowire by a magnetic led and pinned at a geometrical constriction inside the nanowire. The statistics of domain wall pinning and deepening processes indicated two di errant types of domain walls involved in the reversal process. With the assistance of micro magnetic simulations the domain walls were ident end as vortex walls of di errant chirality’s. Thus the interaction of domain walls with a Nano constriction and its dependence on the chirality of domain walls are understood.
In chapter 7, a brief summary of the results obtained during the course of investigations is presented. An outlook presented at the end will help the readers of this thesis to understand the important research problems in this area and their potential future aspects.
|
3 |
Präparation und Charakterisierung nanostrukturierter Magnetwerkstoffe unter besonderer Berücksichtigung des Exchange Bias EffektsSchletter, Herbert 12 July 2013 (has links)
Der Einsatz nanostrukturierter Magnetmaterialien als Speicherschichten in Festplatten stellt ein vielversprechendes Konzept zur weiteren Erhöhung der erreichbaren Speicherdichten im Vergleich zu den heute eingesetzten granularen Medien dar. Für die Realisierung dieses Konzeptes ist eine detaillierte Kenntnis der Struktureigenschaften und deren Einfluss auf das magnetische Verhalten der einzusetzenden Schichten erforderlich. Für die vorliegende Arbeit wurden drei verschiedene magnetische Materialien ausgewählt und insbesondere mit elektronenmikroskopischen Methoden in struktureller Hinsicht untersucht. Dazu zählen ferromagnetische (FePt)(100-x)Cu(x) -Schichten, ferromagnetische [Co/Pt]n -Multilagen sowie ferrimagnetische Fe(100-x)Tb(x) -Schichten.
Der Schwerpunkt der Untersuchungen lag dabei auf der Korrelation zwischen strukturellen und magnetischen Eigenschaften sowie im Einfluss der Nanostrukturierung auf das magnetische Verhalten der Schichten. In dieser Hinsicht wurden Aspekte der durch die Struktur bedingten magnetischen Anisotropie in Form von magnetokristalliner und Grenzflächenanisotropie betrachtet. Zudem wurde das Kopplungsverhalten zwischen einzelnen Strukturelementen in nanostrukturierten Schichten untersucht.
Aufbauend auf die Untersuchung der drei genannten Materialien wurden [Co/Pt]n und Fe(100-x)Tb(x) ausgewählt zum Aufbau eines Systems mit zwei magnetischen Komponenten: Fe(80)Tb(20) / [Co/Pt]10. Die Untersuchungen konzentrierten sich dabei auf die Morphologie der Grenzfläche zwischen den beiden Bestandteilen und deren Einfluss auf den Exchange Bias, der in diesem System vorliegt.
|
Page generated in 0.0585 seconds