• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 72
  • 11
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 219
  • 219
  • 122
  • 70
  • 65
  • 54
  • 51
  • 40
  • 38
  • 36
  • 35
  • 33
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Applications of UV/H2O2, UV/NO3–, and UV-vis/ferrite/sulfite Advanced Oxidation Processes to Remove Contaminants of Emerging Concern for Wastewater Treatment

Huang, Ying 18 October 2018 (has links)
No description available.
82

Design of a Novel Thin Film Reactor for Photocatalytic Water Treatment Process

Harianto, Rina 06 November 2020 (has links)
No description available.
83

Study on Decolorization of Reactive-dyed Cotton through Fenton-oxidation as a Pre-treatment for Textile Recycling

Meurs, Elise January 2023 (has links)
In this master thesis, the feasibility of Fenton-oxidation for the decolorization of reactive dyed cotton is investigated as a potentially environmental-friendly preparatory treatment for mechanical/chemical recycling. Raw, knitted cotton is dyed with a black and a blue dye, whereafter preliminary tests are performed to investigate the influence of increasing Fenton- solution concentrations and different iron-sources on the efficiency of the discoloration, without carrying out complete optimization of the process-parameters. Based on the preliminary test-results, Fenton-treatments of the reactive-dyed cotton are upscaled, with discoloration efficiencies of 62 and 73% (for the black- and blue-dyed cotton respectively). Thermal analysis (TGA, DSC and FTIR) and mechanical analysis (tensile tests and shredding of the fabric) of the upscaled treated samples are performed, and the results indicate no major alterations of the main cellulosic structure of the cotton fibers. However, besides the degradation of the dye-molecules, also some oxidation (and therefore damage) of the cellulose-chains of the cotton fibers occurs, leading to reduced mechanical properties. Although this facilitates the mechanical recycling process, it possibly also reduces the quality of the re-spun yarns. Nevertheless, the Fenton-oxidation in the context of decolorization of reactive-dyed cotton forms an interesting future research-topic with many opportunities and prospects for increasing the efficiency and sustainability of the recycling process, and therefor increasing the sustainability of the textile industry in general.
84

Degradation of Atrazine using Combined Electrolysis and Ozonation: Impact of pH and Electrolyte Composition

Saylor, Greg 23 August 2022 (has links)
No description available.
85

Sustainable Strategies for Eliminating Contaminants of Emerging Concern: Coagulation for Algae Removal and Photocatalysis-based Advanced Oxidation Processes

Ren, Bangxing January 2022 (has links)
No description available.
86

Reductive treatment of drinking water contaminants and disinfection by-products using aqueous phase corona discharge.

Lakhian, Vickram 06 1900 (has links)
With increasing global population comes an increase in the need to safe and clean drinking water. Contaminants can arise in drinking water either naturally, or by the interaction of disinfection chemicals with naturally occurring materials, or simply due to by-products of the disinfection mechanism itself. Due to the oxidative nature of our disinfection treatments, these species are in highly oxidized states, and in some cases require chemical reduction to become less harmful. The present work demonstrates the capabilities of aqueous phase corona plasma in reductive treatment of oxidized contaminants found in drinking water. This study focuses on the treatment of the nitrate ion, bromate ion, chlorate ion and monobromoacetic acid, all of which can be found in typical drinking water systems. The second and third chapters within this thesis establish the optimal water matrix conditions for the treatment of bromate, chlorate and nitrate. These experiments investigate the influence of pH, temperature, presence and types of oxidative scavengers, dissolved gases and by-products that are made by this treatment process with these compounds. The main conclusion of these works is that aqueous phase corona discharge is capable of producing chemical compounds with sufficient energy to chemically reduce the nitrate, bromate and chlorate anions. Acidic conditions, under low dissolved oxygen scenarios facilitated the highest amount of reduction of the target contaminants, as well as having the presence of oxidative species scavengers. It was also observed that the anoxic environment could be obtained by introducing alcohols into the contaminated solution which generated sufficient cavitation and bubbling to strip the oxygen from solution. Through a comparison of various carbonaceous compounds as oxidative species scavengers, it was determined that the volatile alcohols provided a better performance than other soluble carbon sources, due to the decrease in dissolved oxygen. The fourth chapter considers different methods of introducing argon, oxygen and nitrogen into the test solution for the effect they would have on the treatment of solutions containing the bromate anion or monobromoacetic acid. The optimal pH for the treatment of monobromoacetic acid was also established, where again the acidic conditions prevailed. Tests were conducted to consider the effect of having the solution pre-saturated with the test gas, continually sparged, or with the gas passing through a hollow discharge electrode. The tests in which gas was blown through the discharge electrode greatly surpassed all other treatment regimes, where nitrogen provided the best removal for both contaminants under acidic conditions for bromate and under acidic and basic conditions for monobromoacetic acid. The fifth chapter provides conclusions for the overall thesis and recommendations for future work. / Thesis / Doctor of Philosophy (PhD)
87

Integration of Zero-Valent Metals and Chemical Oxidation for the Destruction of 2,4,6-Trinitrotoluene within Aqueous Matrices

Hernandez, Rafael 13 December 2002 (has links)
The Department of Defense (DoD) has numerous sites that contain groundwater contaminated with 2,4,6-trinitrotoluene (TNT). The currently applied technologies for treating TNT contaminated waters are carbon adsorption and chemical oxidation. Carbon adsorption is a non-destructive technology, which could create future liability issues and is inefficient at relatively low TNT concentrations. On the other hand, application of chemical oxidation for the treatment of TNT contaminated water generates trinitrobenzene (TNB), a by-product of the incomplete oxidation of TNT. TNB is regulated as strictly as TNT. Additionally, over 70% of the reactor required treatment time for meeting target levels is due solely for TNB removal. This study evaluated the potential integration of zero-valent metallic species and advanced oxidation for the treatment of waters contaminated with TNT. The idea was to reduce treatment time, and thus, operational costs, when advanced oxidation is used as a stand-alone treatment technology by reducing TNT prior to oxidation. The use of zero-valent metals as the first treatment step transformed TNT into reduced organic compounds which were easily oxidized. The effectiveness of zinc, iron, nickel, copper, and tin as TNT reducing agents was evaluated. Zinc and iron were selected for further study based on their performance degrading TNT. Then, the reduction mechanism (pathway) and associated by-products of TNT reduction using zinc were examined using a zinc specimen manufactured by Sigma Corporation. Three amines were identified during reduction : 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, and 2,4-diamino-toluene. Other intermediates were observed but not identified. Many of these reduction by-products adsorbed strongly onto the metal surface, significantly reducing the rate of TNT degradation during aging experiments. The aging of the metallic species was modeled using a power decay law parameter with the rate expression for TNT degradation. Corrosion promoters such as KCl addition, ozonation, and peroxone were evaluated as alternatives to reactivate zinc and iron to achieve steady TNT degradation. The addition of KCl performed significantly better than ozonation and peroxone. Furthermore, addition of KCl during the reduction step using iron or zinc generated organics that were successfully mineralized by ozonation or peroxone.
88

Studies on the Toxicity of Mixtures of Haloacetates and Ethanol in AML-12 Cells

Mamada, Sukamto Salang 20 August 2014 (has links)
No description available.
89

Monitoring and Removal of Water Contaminants of Emerging Concern: Development of A Multi-Walled Carbon Nanotube Based-Biosensor and Highly Tailor-Designed Titanium Dioxide Photocatalysts

Han, Changseok 27 October 2014 (has links)
No description available.
90

Kinetic and Mechanistic Studies on the Removal of Cyanotoxins and Antibiotics with Hydroxyl and Sulfate Radical Based Advanced Oxidation Processes

He, Xuexiang 12 September 2014 (has links)
No description available.

Page generated in 0.0453 seconds