• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 4
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 22
  • 18
  • 17
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

SSVEP-EEG signal pattern recognition system for real-time brain-computer interfaces applications / Sistema de reconhecimento de padrões de sinais SSVEP-EEG para aplicações em interfaces cérebro-computador

Giovanini, Renato de Macedo [UNESP] 18 August 2017 (has links)
Submitted by Renato de Macedo Giovanini null (renato81243@aluno.feis.unesp.br) on 2017-09-25T14:52:54Z No. of bitstreams: 1 dissertacao_renato_de_macedo_giovanini_2017_final.pdf: 10453769 bytes, checksum: 7f7e2415a0912fae282affadea2685b8 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-27T20:24:55Z (GMT) No. of bitstreams: 1 giovanini_rm_me_ilha.pdf: 10453769 bytes, checksum: 7f7e2415a0912fae282affadea2685b8 (MD5) / Made available in DSpace on 2017-09-27T20:24:55Z (GMT). No. of bitstreams: 1 giovanini_rm_me_ilha.pdf: 10453769 bytes, checksum: 7f7e2415a0912fae282affadea2685b8 (MD5) Previous issue date: 2017-08-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / There are, nowadays, about 110 million people in the world who live with some type of severe motor disability. Specifically in Brazil, about 2.2% of the population are estimated to live with a condition of difficult locomotion. Aiming to help these people, a vast variety of devices, techniques and services are currently being developed. Among those, one of the most complex and challenging techniques is the study and development of Brain-Computer Interfaces (BCIs). BCIs are systems that allow the user to communicate with the external world controlling devices without the use of muscles or peripheral nerves, using only his decoded brain activity. To achieve this, there is a need to develop robust pattern recognition systems, that must be able to detect the user’s intention through electroencephalography (EEG) signals and activate the corresponding output with reliable accuracy and within the shortest possible processing time. In this work, different EEG signal processing techniques were studied, and it is presented the development of a EEG under visual stimulation (Steady-State Visual Evoked Potentials - SSVEP) pattern recognition system. Using only Open Source tools and Python programming language, modules to manage datasets, reduce noise, extract features and perform classification of EEG signals were developed, and a comparative study of different techniques was performed, using filter banks and Discrete Wavelet Transforms (DWT) as feature extraction approaches, and the classifiers K-Nearest Neighbors, Multilayer Perceptron and Random Forests. Using DWT approach with Random Forest and Multilayer Perceptron classifiers, high accuracy rates up to 92 % were achieved in deeper decomposition levels. Then, the small-size microcomputer Raspberry Pi was used to perform time processing evaluation, obtaining short processing times for every classifiers. This work is a preliminary study of BCIs at the Laboratório de Instrumentação e Engenharia Biomédica, and, in the future, the system here presented may be part of a complete SSVEP-BCI system. / Existem, atualmente, cerca de 110 milhões de pessoas no mundo que vivem com algum tipo de deficiência motora severa. Especificamente no Brasil, é estimado que cerca de 2.2% da população conviva com alguma condição que dificulte a locomoção. Com o intuito de auxiliar tais pessoas, uma grande variedade de dispositivos, técnicas e serviços são atualmente desenvolvidos. Dentre elas, uma das técnicas mais complexas e desafiadoras é o estudo e o desenvolvimento de Interfaces Cérebro-Computador (ICMs). As ICMs são sistemas que permitem ao usuário comunicar-se com o mundo externo, controlando dispositivos sem o uso de músculos ou nervos periféricos, utilizando apenas sua atividade cerebral decodificada. Para alcançar isso, existe a necessidade de desenvolvimento de sistemas robustos de reconhecimento de padrões, que devem ser capazes de detectar as intenções do usuáro através dos sinais de eletroencefalografia (EEG) e ativar a saída correspondente com acurácia confiável e o menor tempo de processamento possível. Nesse trabalho foi realizado um estudo de diferentes técnicas de processamento de sinais de EEG, e o desenvolvimento de um sistema de reconhecimento de padrões de sinais de EEG sob estimulação visual (Potenciais Evocados Visuais de Regime Permanente - PEVRP). Utilizando apenas técnicas de código aberto e a linguagem Python de programação, foram desenvolvidos módulos para realizar o gerenciamento de datasets, redução de ruído, extração de características e classificação de sinais de EEG, e um estudo comparativo de diferentes técnicas foi realizado, utilizando-se bancos de filtros e a Transformada Wavelet Discreta (DWT) como abordagens de extração de características, e os classificadores K-Nearest Neighbors, Perceptron Multicamadas e Random Forests. Utilizando-se a DWT juntamente com Random Forests e Perceptron Multicamadas, altas taxas de acurácia de até 92 % foram obtidas nos níveis mais profundos de decomposição. Então, o computador Raspberry Pi, de pequenas dimensões, foi utilizado para realizar a avaliação do tempo de processamento, obtendo um baixo tempo de processamento para todos os classificadores. Este trabalho é um estudo preliminar em ICMs no Laboratório de Instrumentação e Engenharia Biomédica e, no futuro, pode ser parte de um sistema ICM completo.
32

Time Series Analysis Of Neurobiological Signals

Hariharan, N 10 1900 (has links) (PDF)
No description available.
33

Real-time readout of neural contents in visual perception and selection in the non-human primate / Lecture en temps réel du contenu de la perception visuelle et de la sélection chez le primate non-humain

Astrand, Elaine 31 October 2014 (has links)
Un accès aux représentations mentales. Voici une phrase qui pourrait bientôt devenir une réalité. La recherche sur les interfaces cerveau-Machines est un champ de recherche en plein essor. En particulier, de grandes avancées ont été réalisées pour permettre par exemple à des tétraplégiques de retrouver une relative autonomie en actionnant un bras robotique par l'activité de leur cerveau. L'équipe de Hochberg a mis en évidence un système permettant à une femme tétraplégique d'attraper une boisson et de boire. Cela montre la précision incroyable que peut avoir une prothèse artificielle pilotée par le cerveau. Ma thèse porte sur un aspect peu exploré des interfaces cerveau-Machines, celui des interfaces cerveau-Machines cognitives, c'est-À-Dire utilisant le contenu représentationnel intime de l'activité du cerveau. Son objectif est de démontrer, sur un modèle primate non-Humaine, la possibilité d'accéder en temps-Réel à ce type de contenu complexe, y compris dans un environnement en perpétuel changement. L'adaptation des interfaces cerveau-Machines dans le monde réel, où nous sommes constamment confrontés à de nouvelles informations, est critique pour son fonctionnement. Un autre aspect, très important, porte sur l'exploration et la compréhension du système nerveux au niveau populationnel en utilisant des méthodes similaires à celles utilisées pour extraire de l'information dans les interfaces cerveau-Machines. Cela nous permet d'étudier le contenu instantané et sa dynamique dans l'évolution du temps. En résumé, nous démontrons la faisabilité d'accéder en temps-Réel à des informations complexes de l'attention spatiale et de la perception visuelle. Cet accès en temps-Réel n'est que peu affecté par un environnement qui change. Le potentiel de ce type d'interfaces cerveau-Machines est immense en vue du traitement de pathologies neurologiques aigües (suite à des accidents cérébraux vasculaires ou suite à des traumatismes accidentés) ou neurodégénératives (dans la maladie d'Alzheimer ou de Parkinson, pour ne parler que des plus connues) / The field of invasive Brain Machine Interfaces (iBMI) has during the last ten years proven its enormous potential in restoring movements in paralyzed patients. The present doctoral thesis introduces a new dimension to this field by using complex cognitive behavior to drive an iBMI. In this respect, visual processes including spatial attention and perception are of special interest. This thesis project has three principal objectives: first, show the feasibility of decoding cognitive information in an offline setup. Second, evaluate the decoding of cognitive information in a real time experimental setup and third, investigate the impact of this setup in a changing environment, this both from the perspective of driving real time brain-Machine interfaces and that of understanding distributed populational neuronal codes. In line with the first objective of this thesis, an evaluation of several different classification techniques has been carried out in order to choose the best suited method for reading out cognitive information. The study provides evidence that visual information can be read out with similar performance as cognitive information. This study is the first study aiming at explicitly comparing the read out of sensory and cognitive information. The two last objectives of the present thesis are carried out on data from a new real-Time experimental setup. First we demonstrate the feasibility of real-Time readout of spatial attention and perception and we bring about a novel understanding about these two cognitive processes. Second, we show that in a changing environment, remarkable reconfigurations of prefrontal neural populations occur under certain contexts while left unaffected by other contexts. This Ph.D. thesis has taken the field of cognitive brain-Machine interfaces one step further by establishing the impact on spatial attention and perception of a changing environment. Facing the many neurological and neurodegenerative pathologies existing today, this thesis provides a steady ground for the continuation of research in this area
34

P300-Based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): People With Amyotrophic Lateral Sclerosis (ALS) vs. Age-Matched Controls

McCane, Lynn M., Heckman, Susan M., McFarland, Dennis J., Townsend, George, Mak, Joseph N., Sellers, Eric W., Zeitlin, Debra, Tenteromano, Laura M., Wolpaw, Jonathan R., Vaughan, Theresa M. 01 January 2015 (has links)
Objective: Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Methods: Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6. ×. 6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. Results: BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). Conclusions: The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin with studies in HVs but also needs to include studies in people with ALS. Their differences in ERP components may affect the selection of electrode montages, and might also affect the selection of presentation parameters (e.g., matrix design, stimulation rate). Significance: P300-based BCI performance in people severely disabled by ALS is similar to that of age-matched control subjects. At the same time, their ERP components differ to some degree from those of controls. Attention to these differences could contribute to the development of BCIs useful to those with ALS and possibly to others with severe neuromuscular disabilities.
35

Neural Representation of Somatosensory Signals in Inferior Frontal Gyrus of Individuals with Chronic Tetraplegia

Ketting-Olivier, Aaron Brandon 25 January 2022 (has links)
No description available.
36

A MINIATURIZED BRAIN-MACHINE-SPINAL CORD INTERFACE (BMSI) FOR CLOSED-LOOP INTRASPINAL MICROSTIMULATION

shahdoostfard, shahabedin 01 February 2018 (has links)
No description available.
37

Restoring Thought-Controlled Movements After Paralysis: Developing Brain Computer Interfaces For Control Of Reaching Using Functional Electrical Stimulation

Young, Daniel R. 31 August 2018 (has links)
No description available.
38

Detecção de potenciais evocados P300 para ativação de uma interface cérebro-máquina. / Brain-computer interface based on P300 event-related potential detection.

Antônio Carlos Bastos de Godói 20 July 2010 (has links)
Interfaces cérebro-computador ou Interfaces cérebro-máquina (BCIs/BMIs do inglês Brain-computer interface/Brain-machine interface) são dispositivos que permitem ao usuário interagir com o ambiente ao seu redor sem que seja necessário ativar seus músculos esqueléticos. Estes dispositivos são de extrema valia para indivíduos portadores de deficiências motoras. Esta dissertação ambiciona revisar a literatura acerca de BMIs e expor diferentes técnicas de pré-processamento, extração de características e classificação de sinais neurofisiológicos. Em particular, uma maior ênfase será dada à Máquina de vetor de suporte (SVM do inglês Support-Vector machine), método de classificação baseado no princípio da minimização do risco estrutural. Será apresentado um estudo de caso, que ilustra o funcionamento de uma BMI, a qual permite ao usuário escolher um dentre seis objetos mostrados em uma tela de computador. Esta capacidade da BMI é conseqüência da implementação, através da SVM de um sistema capaz de detectar o potencial evocado P300 nos sinais de eletroencefalograma (EEG). A simulação será realizada em Matlab usando, como sinais de entrada, amostras de EEG de quatro indivíduos saudáveis e quatro deficientes. A análise estatística mostrou que o bom desempenho obtido pela BMI (80,73% de acerto em média) foi promovido pela aplicação da média coerente aos sinais, o que melhorou a relação sinal-ruído do EEG. / Brain-computer interfaces (BCIs) or Brain-machine interfaces (BMIs) technology provide users with the ability to communicate and control their environment without employing normal output pathway of peripheral nerves and muscles. This technology can be especially valuable for highly paralyzed patients. This thesis reviews BMI research, techniques for preprocessing, feature extracting and classifying neurophysiological signals. In particular, emphasis will be given to Support-Vector Machine (SVM), a classification technique, which is based on structural risk minimization. Additionally, a case study will illustrate the working principles of a BMI which analyzes electroencephalographic signals in the time domain as means to decide which one of the six images shown on a computer screen the user chose. The images were selected according to a scenario where users can control six electrical appliances via a BMI system. This was done by exploiting the Support-Vector Machine ability to recognize a specific EEG pattern (the so-called P300). The study was conducted offline within the Matlab environment and used EEG datasets recorded from four disabled and four able-bodied subjects. A statistical survey of the results has shown that the good performance attained (80,73%) was due to signal averaging method, which enhanced EEG signal-to-noise ratio.
39

Detecção de potenciais evocados P300 para ativação de uma interface cérebro-máquina. / Brain-computer interface based on P300 event-related potential detection.

Godói, Antônio Carlos Bastos de 20 July 2010 (has links)
Interfaces cérebro-computador ou Interfaces cérebro-máquina (BCIs/BMIs do inglês Brain-computer interface/Brain-machine interface) são dispositivos que permitem ao usuário interagir com o ambiente ao seu redor sem que seja necessário ativar seus músculos esqueléticos. Estes dispositivos são de extrema valia para indivíduos portadores de deficiências motoras. Esta dissertação ambiciona revisar a literatura acerca de BMIs e expor diferentes técnicas de pré-processamento, extração de características e classificação de sinais neurofisiológicos. Em particular, uma maior ênfase será dada à Máquina de vetor de suporte (SVM do inglês Support-Vector machine), método de classificação baseado no princípio da minimização do risco estrutural. Será apresentado um estudo de caso, que ilustra o funcionamento de uma BMI, a qual permite ao usuário escolher um dentre seis objetos mostrados em uma tela de computador. Esta capacidade da BMI é conseqüência da implementação, através da SVM de um sistema capaz de detectar o potencial evocado P300 nos sinais de eletroencefalograma (EEG). A simulação será realizada em Matlab usando, como sinais de entrada, amostras de EEG de quatro indivíduos saudáveis e quatro deficientes. A análise estatística mostrou que o bom desempenho obtido pela BMI (80,73% de acerto em média) foi promovido pela aplicação da média coerente aos sinais, o que melhorou a relação sinal-ruído do EEG. / Brain-computer interfaces (BCIs) or Brain-machine interfaces (BMIs) technology provide users with the ability to communicate and control their environment without employing normal output pathway of peripheral nerves and muscles. This technology can be especially valuable for highly paralyzed patients. This thesis reviews BMI research, techniques for preprocessing, feature extracting and classifying neurophysiological signals. In particular, emphasis will be given to Support-Vector Machine (SVM), a classification technique, which is based on structural risk minimization. Additionally, a case study will illustrate the working principles of a BMI which analyzes electroencephalographic signals in the time domain as means to decide which one of the six images shown on a computer screen the user chose. The images were selected according to a scenario where users can control six electrical appliances via a BMI system. This was done by exploiting the Support-Vector Machine ability to recognize a specific EEG pattern (the so-called P300). The study was conducted offline within the Matlab environment and used EEG datasets recorded from four disabled and four able-bodied subjects. A statistical survey of the results has shown that the good performance attained (80,73%) was due to signal averaging method, which enhanced EEG signal-to-noise ratio.
40

Wavelet Based Algorithms For Spike Detection In Micro Electrode Array Recordings

Nabar, Nisseem S 06 1900 (has links)
In this work, the problem of detecting neuronal spikes or action potentials (AP) in noisy recordings from a Microelectrode Array (MEA) is investigated. In particular, the spike detection algorithms should be less complex and with low computational complexity so as to be amenable for real time applications. The use of the MEA is that it allows collection of extracellular signals from either a single unit or multiple (45) units within a small area. The noisy MEA recordings then undergo basic filtering, digitization and are presented to a computer for further processing. The challenge lies in using this data for detection of spikes from neuronal firings and extracting spatiotemporal patterns from the spike train which may allow control of a robotic limb or other neuroprosthetic device directly from the brain. The aim is to understand the spiking action of the neurons, and use this knowledge to devise efficient algorithms for Brain Machine Interfaces (BMIs). An effective BMI will require a realtime, computationally efficient implementation which can be carried out on a DSP board or FPGA system. The aim is to devise algorithms which can detect spikes and underlying spatio-temporal correlations having computational and time complexities to make a real time implementation feasible on a specialized DSP chip or an FPGA device. The time-frequency localization, multiresolution representation and analysis properties of wavelets make them suitable for analysing sharp transients and spikes in signals and distinguish them from noise resembling a transient or the spike. Three algorithms for the detection of spikes in low SNR MEA neuronal recordings are proposed: 1. A wavelet denoising method based on the Discrete Wavelet Transform (DWT) to suppress the noise power in the MEA signal or improve the SNR followed by standard thresholding techniques to detect the spikes from the denoised signal. 2. Directly thresholding the coefficients of the Stationary (Undecimated) Wavelet Transform (SWT) to detect the spikes. 3. Thresholding the output of a Teager Energy Operator (TEO) applied to the signal on the discrete wavelet decomposed signal resulting in a multiresolution TEO framework. The performance of the proposed three wavelet based algorithms in terms of the accuracy of spike detection, percentage of false positives and the computational complexity for different types of wavelet families in the presence of colored AR(5) (autoregressive model with order 5) and additive white Gaussian noise (AWGN) is evaluated. The performance is further evaluated for the wavelet family chosen under different levels of SNR in the presence of the colored AR(5) and AWGN noise. Chapter 1 gives an introduction to the concept behind Brain Machine Interfaces (BMIs), an overview of their history, the current state-of-the-art and the trends for the future. It also describes the working of the Microelectrode Arrays (MEAs). The generation of a spike in a neuron, the proposed mechanism behind it and its modeling as an electrical circuit based on the Hodgkin-Huxley model is described. An overview of some of the algorithms that have been suggested for spike detection purposes whether in MEA recordings or Electroencephalographic (EEG) signals is given. Chapter 2 describes in brief the underlying ideas that lead us to the Wavelet Transform paradigm. An introduction to the Fourier Transform, the Short Time Fourier Transform (STFT) and the Time-Frequency Uncertainty Principle is provided. This is followed by a brief description of the Continuous Wavelet Transform and the Multiresolution Analysis (MRA) property of wavelets. The Discrete Wavelet Transform (DWT) and its filter bank implementation are described next. It is proposed to apply the wavelet denoising algorithm pioneered by Donoho, to first denoise the MEA recordings followed by standard thresholding technique for spike detection. Chapter 3 deals with the use of the Stationary or Undecimated Wavelet Transform (SWT) for spike detection. It brings out the differences between the DWT and the SWT. A brief discussion of the analysis of non-stationary time series using the SWT is presented. An algorithm for spike detection based on directly thresholding the SWT coefficients without any need for reconstructing the denoised signal followed by thresholding technique as in the first method is presented. In chapter 4 a spike detection method based on multiresolution Teager Energy Operator is discussed. The Teager Energy Operator (TEO) picks up localized spikes in signal energy and thus is directly used for spike detection in many applications including R wave detection in ECG and various (alpha, beta) rhythms in EEG. Some basic properties of the TEO are discussed followed by the need for a multiresolution approach to TEO and the methods existing in literature. The wavelet decomposition and the subsampled signal involved at each level naturally lends it to a multiresolution TEO framework at the same time significantly reducing the computational complexity due the subsampled signal at each level. A wavelet-TEO algorithm for spike detection with similar accuracies as the previous two algorithms is proposed. The method proposed here differs significantly from that in literature since wavelets are used instead of time domain processing. Chapter 5 describes the method of evaluation of the three algorithms proposed in the previous chapters. The spike templates are obtained from MEA recordings, resampled and normalized for use in spike trains simulated as Poisson processes. The noise is modeled as colored autoregressive (AR) of order 5, i.e AR(5), as well as Additive White Gaussian Noise (AWGN). The noise in most human and animal MEA recordings conforms to the autoregressive model with orders of around 5. The AWGN Noise model is used in most spike detection methods in the literature. The performance of the proposed three wavelet based algorithms is measured in terms of the accuracy of spike detection, percentage of false positives and the computational complexity for different types of wavelet families. The optimal wavelet for this purpose is then chosen from the wavelet family which gives the best results. Also, optimal levels of decomposition and threshold factors are chosen while maintaining a balance between accuracy and false positives. The algorithms are then tested for performance under different levels of SNR with the noise modeled as AR(5) or AWGN. The proposed wavelet based algorithms exhibit a detection accuracy of approximately 90% at a low SNR of 2.35 dB with the false positives below 5%. This constitutes a significant improvement over the results in existing literature which claim an accuracy of 80% with false positives of nearly 10%. As the SNR increases, the detection accuracy increases to close to 100% and the false alarm rate falls to 0. Chapter 6 summarizes the work. A comparison is made between the three proposed algorithms in terms of detection accuracy and false positives. Directions in which future work may be carried out are suggested.

Page generated in 0.0389 seconds