• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 4
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 22
  • 18
  • 17
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Non-Linear Adaptive Bayesian Filtering for Brain Machine Interfaces

Li, Zheng January 2010 (has links)
<p>Brain-machine interfaces (BMI) are systems which connect brains directly to machines or computers for communication. BMI-controlled prosthetic devices use algorithms to decode neuronal recordings into movement commands. These algorithms operate using models of how recorded neuronal signals relate to desired movements, called models of tuning. Models of tuning have typically been linear in prior work, due to the simplicity and speed of the algorithms used with them. Neuronal tuning has been shown to slowly change over time, but most prior work do not adapt tuning models to these changes. Furthermore, extracellular electrical recordings of neurons' action potentials slowly change over time, impairing the preprocessing step of spike-sorting, during which the neurons responsible for recorded action potentials are identified.</p> <p></p> <p>This dissertation presents a non-linear adaptive Bayesian filter and an adaptive spike-sorting method for BMI decoding. The adaptive filter consists of the n-th order unscented Kalman filter and Bayesian regression self-training updates. The unscented Kalman filter estimates desired prosthetic movements using a non-linear model of tuning as its observation model. The model is quadratic with terms for position, velocity, distance from center of workspace, and velocity magnitude. The tuning model relates neuronal activity to movements at multiple time offsets simultaneously, and the movement model of the filter is an order n autoregressive model.</p> <p>To adapt the tuning model parameters to changes in the brain, Bayesian regression self-training updates are performed periodically. Tuning model parameters are stored as probability distributions instead of point estimates. Bayesian regression uses the previous model parameters as priors and calculates the posteriors of the regression between filter outputs, which are assumed to be the desired movements, and neuronal recordings. Before each update, filter outputs are smoothed using a Kalman smoother, and tuning model parameters are passed through a transition model describing how parameters change over time. Two variants of Bayesian regression are presented: one uses a joint distribution for the model parameters which allows analytical inference, and the other uses a more flexible factorized distribution that requires approximate inference using variational Bayes.</p> <p>To adapt spike-sorting parameters to changes in spike waveforms, variational Bayesian Gaussian mixture clustering updates are used to update the waveform clustering used to calculate these parameters. This Bayesian extension of expectation-maximization clustering uses the previous clustering parameters as priors and computes the new parameters as posteriors. The use of priors allows tracking of clustering parameters over time and facilitates fast convergence.</p> <p>To evaluate the proposed methods, experiments were performed with 3 Rhesus monkeys implanted with micro-wire electrode arrays in arm-related areas of the cortex. Off-line reconstructions and on-line, closed-loop experiments with brain-control show that the n-th order unscented Kalman filter is more accurate than previous linear methods. Closed-loop experiments over 29 days show that Bayesian regression self-training helps maintain control accuracy. Experiments on synthetic data show that Bayesian regression self-training can be applied to other tracking problems with changing observation models. Bayesian clustering updates on synthetic and neuronal data demonstrate tracking of cluster and waveform changes. These results indicate the proposed methods improve the accuracy and robustness of BMIs for prosthetic devices, bringing BMI-controlled prosthetics closer to clinical use.</p> / Dissertation
22

Brain-Computer Interface Control of an Anthropomorphic Robotic Arm

Clanton, Samuel T. 21 July 2011 (has links)
This thesis describes a brain-computer interface (BCI) system that was developed to allow direct cortical control of 7 active degrees of freedom in a robotic arm. Two monkeys with chronic microelectrode implants in their motor cortices were able to use the arm to complete an oriented grasping task under brain control. This BCI system was created as a clinical prototype to exhibit (1) simultaneous decoding of cortical signals for control of the 3-D translation, 3-D rotation, and 1-D finger aperture of a robotic arm and hand, (2) methods for constructing cortical signal decoding models based on only observation of a moving robot, (3) a generalized method for training subjects to use complex BCI prosthetic robots using a novel form of operator-machine shared control, and (4) integrated kinematic and force control of a brain-controlled prosthetic robot through a novel impedance-based robot controller. This dissertation describes each of these features individually, how their integration enriched BCI control, and results from the monkeys operating the resulting system.
23

[en] ALGORITHMS FOR MOTOR IMAGERY PATTERN RECOGNITION IN A BRAIN-MACHINE INTERFACE / [pt] ALGORITMOS PARA RECONHECIMENTO DE PADRÕES EM IMAGÉTICA MOTORA EM UMA INTERFACE CÉREBRO-MÁQUINA

GABRIEL CHAVES DE MELO 14 August 2018 (has links)
[pt] Uma interface cérebro-máquina (ICM) é um sistema que permite a um indivíduo, entre outras coisas, controlar um dispositivo robótico por meio de sinais oriundos da atividade cerebral. Entre os diversos métodos para registrar os sinais cerebrais, destaca-se a eletroencefalografia (EEG), principalmente por ter uma rápida resposta temporal e não oferecer riscos ao usuário, além de o equipamento ter um baixo custo relativo e ser portátil. Muitas situações podem fazer com que uma pessoa perca o controle motor sobre o corpo, mesmo preservando todas as funções do cérebro, como doenças degenerativas, lesões medulares, entre outras. Para essas pessoas, uma ICM pode representar a única possibilidade de interação consciente com o mundo externo. Todavia, muitas são as limitações que impossibilitam o uso das ICMs da forma desejada, entre as quais estão as dificuldades de se desenvolver algoritmos capazes de fornecer uma alta confiabilidade em relação ao reconhecimento de padrões dos sinais registrados com EEG. A escolha pelas melhores posições dos eletrodos e as melhores características a serem extraídas do sinal é bastante complexa, pois é altamente condicionada à variabilidade interpessoal dos sinais. Neste trabalho um método é proposto para escolher os melhores eletrodos e as melhores características para pessoas distintas e é testado com um banco de dados contendo registros de sete pessoas. Posteriormente dados são extraídos com um equipamento próprio e uma versão adaptada do método é aplicada visando uma atividade em tempo real. Os resultados mostraram que o método é eficaz para a maior parte das pessoas e a atividade em tempo real forneceu resultados promissores. Foi possível analisar diversos aspectos do algoritmo e da variabilidade inter e intrapessoal dos sinais e foi visto que é possível, mesmo com um equipamento limitado, obter bons resultados mediante análises recorrentes para uma mesma pessoa. / [en] A brain-machine interface (BMI) system allows a person to control robotic devices with brain signals. Among many existing methods for signal acquisition, electroencephalography is the most often used for BCI purposes. Its high temporal resolution, safety to use, portability and low cost are the main reasons for being the most used method. Many situations can affect a person s capability of controlling their body, although brain functions remain healthy. For those people in the extreme case, where there is no motor control, a BCI can be the only way to interact with the external world. Nevertheless, it is still necessary to overcome many obstacles for making the use of BCI systems to become practical, and the most important one is the difficulty to design reliable algorithms for pattern recognition using EEG signals. Inter-subject variability related to the EEG channels and features of the signal are the biggest challenges in the way of making BCI systems a useful technology for restoring function to disabled people. In this paper a method for selecting subject-specific channels and features is proposed and validated with data from seven subjects. Later in the work data is acquired with different EEG equipment and an adapted version of the proposed method is applied aiming online activities. Results showed that the method was efficient for most people and online activities had promising results. It was possible to analyze important aspects concerning the algorithm and inter and intrasubject variability of EEG signals. Also, results showed that it is possible to achieve good results when multiple analyses are performed with the same subject, even with EEG equipment with well known limitations concerning signal quality.
24

Algorithms for Neural Prosthetic Applications

January 2017 (has links)
abstract: In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2017
25

The Electrode-Tissue Interface during Recording and Stimulation in the Central Nervous System

Lempka, Scott Francis 17 May 2010 (has links)
No description available.
26

Promoting Independent Operation of Intracortical Brain-Computer Interfaces

Dunlap, Collin 23 September 2022 (has links)
No description available.
27

Investigating and Modeling the Mechanical Contributions to Traumatic Brain Injury in Contact Sports and Chronic Neural Implant Performance

Roy J Lycke (6622721) 10 June 2019 (has links)
Mechanical trauma to the brain, both big and small, and the method to protect the brain in its presence is a crucial field of research given the large population exposed to neuronal trauma daily and the benefit available through better understanding and injury prevention. A population of particular interest and risk are youth athletes in contact sports due to large accelerations they expose themselves to and their developing brains. To better monitor the risk these athletes are exposed to, their accumulation of head acceleration events (HAEs), a measure correlated with harmful neurological changes, was tracked over sport seasons. It was observed that few significant differences in HAEs accumulated existed between players of ages from middle school to high school, but there did exist a difference between sports with girls' soccer players accumulating fewer HAEs than football players. This highlights to risk youth athletes are exposed to and the importance of improved technique and individual player size. To better monitor HAEs for each individual, a novel head segmentation program was developed that extracts player specific geometries from a single T1 MRI scan that can improve the accuracy of HAE monitoring. Acceleration measures processed with individualized head model versus those using a standardized head model typically displayed higher accelerations, highlighting the need for individualized measure for accurate monitoring of HAEs and risk of neurological changes. In addition to the large accelerations present in contact sports, the small but constant strains produced by neural implants embedded in the brain is also an important field of neuro-mechanical research as the physical properties of neural implants have been found to contribute to the chronic immune response, a major factor preventing the widespread implementation of neural implants. To reduce the severity of the immune response and provide improved chronic functionality, researchers have varied neural implant design and materials, finding general trends but not precise relationships between the design factors and how they contribute the mechanical strain in the brain. Performing a large series of mechanical simulations and Cotter's sensitivity analyses, the relationships between neural design factors and the stain they produce in the brain was examined. It was found that the direction which neural implants are loaded contributes the most to the strain produced in the brain followed by the degree of bonding between the brain and the electrode. Directly related to the design of electrodes themselves, it was found that in most cases reducing the cross-sectional area of the probe resulted in a larger decrease of mechanical strain compared to softening the implant. Finally, a study was performed quantifying the resting micromotion of the brain utilizing a novel method of soft tissue micromotion measurement via microCT, applicable within the skull and the throughout the rest of the body.
28

Hebbian Neuroplasticity in the Human Corticospinal Tract as Induced by Specific Electrical and Magnetic Stimulation Protocols

McGie, Steven 13 August 2014 (has links)
Conventional functional electrical stimulation (FES) therapy, if provided shortly after an incomplete spinal cord injury, is able to help an individual to restore voluntary hand function. This is thought to occur through the induction of neuroplasticity. However, conventional FES therapy employs a push-button-based control scheme, which does not fully require the recipient to generate volitional movements. The first study in this thesis therefore sought to determine, in an early proof-of-concept test with able-bodied participants, whether control strategies which are triggered by volitional activity (including an electroencephalography-based brain-machine interface (BMI-FES) and an electromyogram-based control scheme (EMG-FES)) might provide greater benefits to hand function. The results offer relatively weak evidence to suggest that BMI-FES, and especially EMG-FES, were able to induce greater neuroplasticity than conventional treatments in the corticospinal tract leading to the hands, but that this did not immediately translate to more functional improvements such as maximum grip force. ii The second study in this thesis focussed on spinal associative stimulation (SAS), which involves paired stimulation pulses at both the head (via transcranial magnetic stimulation), and the wrist (via peripheral nerve stimulation). The purpose of this, as with the first study, was to induce neuroplasticity and upregulate the corticospinal tract leading to the hands. While limited research has suggested that it is possible to produce neuroplasticity through SAS, all such studies have provided stimulation at a fixed frequency of 0.1 or 0.2 Hz. The present study therefore sought to compare the effectiveness of a typical 0.1 Hz paradigm with a 1 Hz paradigm, and a paradigm which provided stimulation in 5 Hz “bursts”. None of the paradigms were able to successfully induce neuroplasticity in a consistent manner. The increased variability in this study as compared to the previous one, despite the nearly identical assessment methodology, suggests that responses to the SAS treatment may have been highly individual. This serves to highlight a potential limitation of the treatment, which is that its effectiveness may not be universal, but rather dependent on each specific recipient. This may be a challenge faced by SAS should it continue to be tested as a novel therapy.
29

SSVEP-EEG signal pattern recognition system for real-time brain-computer interfaces applications /

Giovanini, Renato de Macedo. January 2017 (has links)
Orientador: Aparecido Augusto de Carvalho / Resumo: There are, nowadays, about 110 million people in the world who live with some type of severe motor disability. Specifically in Brazil, about 2.2% of the population are estimated to live with a condition of difficult locomotion. Aiming to help these people, a vast variety of devices, techniques and services are currently being developed. Among those, one of the most complex and challenging techniques is the study and development of Brain-Computer Interfaces (BCIs). BCIs are systems that allow the user to communicate with the external world controlling devices without the use of muscles or peripheral nerves, using only his decoded brain activity. To achieve this, there is a need to develop robust pattern recognition systems, that must be able to detect the user’s intention through electroencephalography (EEG) signals and activate the corresponding output with reliable accuracy and within the shortest possible processing time. In this work, different EEG signal processing techniques were studied, and it is presented the development of a EEG under visual stimulation (Steady-State Visual Evoked Potentials - SSVEP) pattern recognition system. Using only Open Source tools and Python programming language, modules to manage datasets, reduce noise, extract features and perform classification of EEG signals were developed, and a comparative study of different techniques was performed, using filter banks and Discrete Wavelet Transforms (DWT) as feature extraction approach... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
30

Merging brain-computer interfaces and virtual reality : A neuroscientific exploration

Boldeanu, Silvia January 2018 (has links)
Brain-computer interfaces (BCIs) blend methods and concepts researched by cognitive neuroscience, electrophysiology, computer science and engineering, resulting in systems of bi-directional information exchange directly between brain and computer. BCIs contribute to medical applications that restore communication and mobility for disabled patients and provide new forms of sending information to devices for enhancement and entertainment. Virtual reality (VR) introduces humans into a computer-generated world, tackling immersion and involvement. VR technology extends the classical multimedia experience, as the user is able to move within the environment, interact with other virtual participants, and manipulate objects, in order to generate the feeling of presence. This essay presents the possibilities of merging BCI with VR and the challenges to be tackled in the future. Current attempts to combine BCI and VR technology have shown that VR is a useful tool to test the functioning of BCIs, with safe, controlled and realistic experiments; there are better outcomes for VR and BCI combinations used for medical purposes compared to solely BCI training; and, enhancement systems for healthy users seem promising with VR-BCIs designed for home users. Future trends include brain-to-brain communication, sharing of several users’ brain signals within the virtual environment, and better and more efficient interfaces.

Page generated in 0.0405 seconds