• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 720
  • 381
  • 115
  • 95
  • 76
  • 31
  • 29
  • 27
  • 26
  • 13
  • 12
  • 9
  • 7
  • 7
  • 6
  • Tagged with
  • 1956
  • 560
  • 396
  • 300
  • 268
  • 216
  • 196
  • 181
  • 176
  • 171
  • 157
  • 142
  • 134
  • 124
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Comparative Surface Thermodynamic Analysis of New Fluid Phase Formation in Various Confining Geometries

Zargarzadeh, Leila Unknown Date
No description available.
212

Bridge Management System with Integrated Life Cycle Cost Optimization

Elbehairy, Hatem January 2007 (has links)
In recent years, infrastructure renewal has been a focus of attention in North America and around the world. Municipal and federal authorities are increasingly recognizing the need for life cycle cost analysis of infrastructure projects in order to facilitate proper prioritization and budgeting of maintenance operations. Several reports have highlighted the need to increase budgets with the goal of overcoming the backlog in maintaining infrastructure facilities. This situation is apparent in the case of bridge networks, which are considered vital links in the road network infrastructure. Because of harsh environments and increasing traffic volumes, bridges are deteriorating rapidly, rendering the task of managing this important asset a complex endeavour. While several bridge management systems (BMS) have been developed at the commercial and research level, they still have serious drawbacks, particularly in integrating bridge-level and network-level decisions, and handling extremely large optimization problems. To overcome these problems, this study presents an innovative bridge management framework that considers network-level and bridge-level decisions. The initial formulation of the proposed framework was limited to bridge deck management. The model has unique aspects: a deterioration model that uses optimized Markov chain matrices, a life cycle cost analysis that considers different repair strategies along the planning horizon, and a system that considers constraints, such as budget limits and desirable improvement in network condition. To optimize repair decisions for large networks that mathematical programming optimization are incapable of handling, four state-of-the art evolutionary algorithms are used: Genetic algorithms, shuffled frog leaping, particle swarm, and ant colony. These algorithms have been used to experiment on different problem sizes and formulations in order to determine the best optimization setup for further developments. Based on the experiments using the framework for the bridge deck, an expanded framework is presented that considers multiple bridge elements (ME-BMS) in a much larger formulation that can include thousands of bridges. Experiments were carried out in order to examine the framework???s performance on different numbers of bridges so that system parameters could be set to minimize the degradation in the system performance with the increase in numbers of bridges. The practicality of the ME-BMS was enhanced by the incorporation of two additional models: a user cost model that estimates the benefits gained in terms of the user cost after the repair decisions are implemented, and a work zone user cost model that minimizes user cost in work zones by deciding the optimal work zone strategy (nighttime shifts, weekend shifts, and continuous closure), also, decides on the best traffic control plan that suits the bridge configuration. To verify the ability of the developed ME-BMS to optimize repair decisions on both the network and project levels, a case study obtained from a transportation municipality was employed. Comparisons between the decisions provided by the ME-BMS and the municipality policy for making decisions indicated that the ME-BMS has great potential for optimizing repair decisions for bridge networks and for structuring the planning of the maintenance of transportation systems, thus leading to cost savings and more efficient sustainability of the transportation infrastructure.
213

Divided Cities & the In-Between

Vaga, Meredith Allison 18 September 2014 (has links)
All cities set up a condition of disjunction as they are inherently manmade ‘built’ places separate from the natural wilderness they abut. The cities that emerge over time are then places held in tension between the kinetic and static forces of civilization, nature, people, ownership and infrastructure. These conflicting pieces manifest as division within the city. The division can be physically seen in specific gaps in the physical infrastructure: urban 'slips' that act as thresholds for a city by gathering and revealing the in/visible dueling qualities, and can ultimately prove to be important spaces and cultural magnets for the city. The analysis is centered on three specific 'slips' within three northern European cities: the South Bridge in Edinburgh, the Charles Bridge in Prague and the Berlin Wall. Looking from the perspective of both the physical, visible infrastructure and the unconscious, invisible cultural realm, these architectural objects are then charted through historical, literary, cartographic and urban analyses to come to an understanding of both the specific ‘characters’ or ‘spirits of place’ and the broad predisposition for division within cities.
214

Optimization of Span-to-depth Ratios in High-strength Concrete Girder Bridges

Poon, Sandy Shuk-Yan 16 February 2010 (has links)
Span-to-depth ratio is an important bridge design parameter that affects structural behaviour, construction costs and aesthetics. A study of 86 constant-depth girders indicates that conventional ratios have not changed significantly since 1958. These conventional ratios are now questionable, because recently developed high-strength concrete has enhanced mechanical properties that allow for slenderer sections. Based on material consumption, cost, and aesthetics comparisons, the thesis determines optimal ratios of an 8-span highway viaduct constructed with high-strength concrete. Three bridge types are investigated: cast-in-place on falsework box-girder and solid slabs, and precast segmental span-by-span box-girder. Results demonstrate that total construction cost is relatively insensitive to span-to-depth ratio over the following ranges of ratios: 10-35, 30-45, and 15-25 for the three bridge types respectively. This finding leads to greater freedom for aesthetic expressions because, compared to conventional values (i.e. 18-23, 22-39, and 16-19), higher ranges of ratios can now be selected without significant cost premiums.
215

Optimization of Span-to-depth Ratios in High-strength Concrete Girder Bridges

Poon, Sandy Shuk-Yan 16 February 2010 (has links)
Span-to-depth ratio is an important bridge design parameter that affects structural behaviour, construction costs and aesthetics. A study of 86 constant-depth girders indicates that conventional ratios have not changed significantly since 1958. These conventional ratios are now questionable, because recently developed high-strength concrete has enhanced mechanical properties that allow for slenderer sections. Based on material consumption, cost, and aesthetics comparisons, the thesis determines optimal ratios of an 8-span highway viaduct constructed with high-strength concrete. Three bridge types are investigated: cast-in-place on falsework box-girder and solid slabs, and precast segmental span-by-span box-girder. Results demonstrate that total construction cost is relatively insensitive to span-to-depth ratio over the following ranges of ratios: 10-35, 30-45, and 15-25 for the three bridge types respectively. This finding leads to greater freedom for aesthetic expressions because, compared to conventional values (i.e. 18-23, 22-39, and 16-19), higher ranges of ratios can now be selected without significant cost premiums.
216

Improvement Of Computational Software For Composite Curved Bridge Analysis

Kalayci, Ahmet Serhat 01 February 2005 (has links) (PDF)
In highway bridge construction, composite curved girder bridges are becoming more popular recently. Reduced construction time, long span coverage, economics and aesthetics make them more popular than the other structural systems. Although there exist some methods for the analysis of such systems, each have shortcomings. The use of Finite Element Method (FEM) among these methods is limited except in the academic environments. The use of commercial FEM software packages in the analysis of such systems is cumbersome as it takes too much time to form a model. Considering such problems a computational software was developed called UTRAP in 2002 which analyzes bridges for construction loads by taking into account the early age deck concrete. As the topic of this thesis work, this program was restructured and new features were added. In the following thesis work, the program structure, modeling considerations and recommendations are discussed together with the parametric studies.
217

Evaluation of performance and maximum length of continuous decks in simple-span bridges

Snedeker, Katherine O. 08 April 2009 (has links)
The purpose of this research was to evaluate the performance history of continuous bridge decks in the State of Georgia, to determine why the current design detail works, to recommend a new design detail if necessary, and to recommend the maximum and/or optimum lengths of continuous bridge decks. The continuous bridge decks have continuous reinforcement over the junction of two edge beams with a construction joint for crack control. The current technical literature and current practices and design procedures were synthesized and summarized. GDOT maintenance reports were reviewed, and field evaluations were conducted to determine the performance of the continuous deck detail. The effects of bridge movement due to thermal strains, shrinkage, and live loads were considered in the analytical studies to better understand the demands placed on the GDOT continuous deck detail. A summary of the design and length recommendations was provided upon completion of the research.
218

Masonry bridges for railroad purposes /

McClintic, H. H. January 1888 (has links)
Thesis (C.E.)--Lehigh University, 1888. / Manuscript. Also available online.
219

Buffeting analysis of cable-supported bridges under turbulent wind in time domain /

Ding, Qiang. January 1999 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1999. / Includes bibliographical references (leaves 151-157).
220

Enligt lotsen : En studie om lotsars upfattning om kommunikationen med bryggteamet

Andersson, Linus, Johansson, Johan January 2018 (has links)
Detta arbetet genomfördes med syftet att undersöka vad svenska hamnlotsar ansåg om kommunikationen med fartygets bryggteam och även utreda uppkomsten av eventuella kommunikationsbrister. I Sverige sker majoriteten av alla fartygsolyckor inom hamnområdet samt den största olyckskategorin är kommunikation. Arbetet genomfördes som en kvalitativ studie där datainsamlingen bestod av semistrukturerade intervjuer med sex svenska hamnlotsar från två olika lotsområden, för att ge en inblick om deras personliga uppfattning gällande kommunikationen med bryggteamet. Resultatet visar att respondenterna anser generellt att kommunikationen är fullt godkänt ombord på fartyg. Men det framgår även att i vissa fall kan språket vara så pass bristfällig att teckenspråk kan vara det enda sättet att kommunicera på. Arbetets slutsats är att språket ombord är den största bidragande faktorn till att kommunikationsbrister uppstår, därför krävs en förbättring.

Page generated in 0.0415 seconds