• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatorial Proofs of Generalizations of Sperner's Lemma

Peterson, Elisha 01 May 2000 (has links)
In this thesis, we provide constructive proofs of serveral generalizations of Sperner's Lemma, a combinatorial result which is equivalent to the Brouwer Fixed Point Theorem. This lemma makes a statement about the number of a certain type of simplices in the triangulation of a simplex with a special labeling. We prove generalizations for polytopes with simplicial facets, for arbitrary 3-polytopes, and for polygons. We introduce a labeled graph which we call a nerve graph to prove these results. We also suggest a possible non-constructive proof for a polytopal generalization.
2

[en] SPERNER S LEMMAS AND APPLICATIONS / [pt] LEMAS DE SPERNER E APLICAÇÕES

KEILLA LOPES CASTILHO JACHELLI 27 February 2018 (has links)
[pt] Esse trabalho visa demonstrar os lemas de Sperner e aplicá-los nasdemonstrações do teorema de Monsky em Q2 e do teorema do ponto fixo deBrouwer em R2. Além disso, relatamos como esses lemas foram abordados com alunos da educação básica tendo como ferramenta educacional jogos de tabuleiro. / [en] This work aims to prove the Sperner s Lemmas and to apply them in proving the Monsky s Theorem in Q2 and the Brouwer fixed point Theorem in R2. Moreover, we report how these lemmas were addressed with students in basic education using board games as educational tools.
3

Elements of conditional optimization and their applications to order theory

Karliczek, Martin 10 December 2014 (has links)
In dieser Arbeit beweisen wir für Optimierungsprobleme in L0-Moduln relevante Resultate und untersuchen Anwendungen für die Darstellung von Präferenzen. Im ersten Kapitel geht es um quasikonkave, monotone und lokale Funktionen von einem L0-Modul X nach L0, die wir robust darstellen. Im zweiten Kapitel entwickeln wir das Ekeland’sche Variationsprinzip für L0-Moduln, die eine L0-Metrik besitzen. Wir beweisen eine L0 -Variante einer Verallgemeinerung des Ekeland’schen Theorems. Der Beweis des Brouwerschen Fixpunktsatzes für Funktionen, die auf (L0)^d definiert sind, wird in Kapitel 3 behandelt. Wir definieren das Konzept des Simplexes in (L0)^d und beweisen, dass jede lokale, folgenstetige Funktion darauf einen Fixpunkt besitzt. Dies nutzen wir, um den Fixpunktsatz auch für Funktionen auf beliebigen abgeschlossenen, L0 -konvexen Mengen zu zeigen. Eine allgemeinere Struktur als L0 ist die bedingte Menge. Im vierten Kapitel behandeln wir bedingte topologische Vektorräume. Wir führen das Konzept der Dualität für bedingte Mengen ein und beweisen Theoreme der Funktionalanalysis darauf, unter anderem das Theorem von Banach-Alaoglu und Krein-Šmulian. Im fünften Kapitel widmen wir uns der Darstellung mit wandernden konvexen Mengen. Wir zeigen danach, wie die Transitivität für diese Darstellungsform beschrieben werden kann. Abschließend modellieren wir die Eigenschaft, dass die Transitivität einer Relation nur für ähnliche Elemente gesichert ist und diskutieren Arten der Darstellung solcher Relationen. / In this thesis, we prove results relevant for optimization problems in L0-modules and study applications to order theory. The first part deals with the notion of an Assessment Index (AI). For an L0 -module X an AI is a quasiconcave, monotone and local function mapping to L0. We prove a robust representation of these AIs. In the second chapter of this thesis, we develop Ekeland’s variational principle for L0-modules allowing for an L0-metric. We prove an L0-Version of a generalization of Ekeland’s theorem. A further application of L0 -theory is examined in the third chapter of this thesis, namely an extension of the Brouwer fixed point theorem to functions on (L0)^d . We define a conditional simplex, which is a simplex with respect to L0 , and prove that every local, sequentially continuous function has a fixed point. We extend the fixed point theorem to arbitrary closed, L0-convex sets. A more general structure than L0 -modules is the concept of conditional sets. In the fourth chapter of the thesis, we study conditional topological vector spaces. We examine the concept of duality for conditional sets and prove results of functional analysis: among others, the Banach-Alaoglu and the Krein-Šmulian theorem. Any L0 -module being a conditional set allows to apply all results to L0 -theory. In the fifth chapter, we discuss the property of transitivity of relations and its connection to certain forms of representations. After a survey of common representations of preferences, we attend to relations induced by moving convex sets which are relations of the form that x is preferred to y if and only if x − y is in a convex set depending on y. We examine in which cases such a representation is transitive. Finally, we exhibit nontransitivity due to dissimilarity of the compared object and discuss representations for relations of that type.
4

[en] ASPECTS OF TOPOLOGY AND FIXED POINT THEORY / [pt] ASPECTOS DA TOPOLOGIA E DA TEORIA DOS PONTOS FIXOS

LEONARDO HENRIQUE CALDEIRA PIRES FERRARI 17 August 2017 (has links)
[pt] Esse trabalho tem como objetivo reunir os teoremas topológicos de ponto fixo clássicos e seus corolários, além de teoremas de ponto fixo provenientes da teoria do grau e algumas importantes aplicações desses teoremas a variadas áreas - desde as clássicas aplicações à teoria de EDOs e EDPs à uma aplicação à teoria dos jogos. Um exemplo é o Teorema do Ponto Fixo de Schauder-Tychonoff, para aplicações compactas em convexos de espaços localmente convexos, do qual segue como corolário que todo compacto convexo de um espaço vetorial normado (não necessariamente de dimensão finita) possui a propriedade do ponto fixo. No que se refere à teoria dos jogos em particular, foi deduzido o Teorema de Nash, que determina condições sobre as quais certos jogos possuem equilíbrios nos seus espaços das estratégias. Toda a topologia geral necessária nas demonstrações foi desenvolvida extensiva e detalhadamente a partir de topologia elementar, seguindo algumas das referências bibliográficas. O Teorema de Extensão de Dugundji - uma extensão do Teorema de Extensão de Tietze a fechados de espaços métricos sobre espaços localmente convexos -, por exemplo, é demonstrado com detalhes e usado diversas vezes ao longo da dissertação. / [en] The goal of the present work is to gather the classical fixed-point theorems and their corollaries, as well as other fixed-point theorems arising from degree theory, and some important applications to diverse fields - from the classical applications to ODEs and PDEs to an application to the game theory. An example is the Schauder-Tychonoff Fixed-Point Theorem, 1 concerning compact mappings in convex subsets of locally convex spaces, from which it follows as a corollary that every compact convex subset of a normed vector space is a fixed-point space. In regard to game theory in particular, we obtained Nash s theorem, 2 which ascertains conditions over which certain games have equilibria in their strategy spaces. All general topology necessary in the proofs was developed extensively and in details from a basic topology starting point, following some of the bibliographic references. Dugundji s Extension Theorem 3 - an extension of Tietze s Extension Theorem 4 for closed subsets of metric spaces into locally convex spaces-, for instance, is obtained with detais and used throughout the dissertation.

Page generated in 0.0335 seconds