Spelling suggestions: "subject:"[een] BULK"" "subject:"[enn] BULK""
121 |
Fatigue life of bulk carrier side shell frame lower toes as a function of ship length and loading condition /Cheater, Brian James, January 2000 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2000. / Bibliography: leaves 107-109.
|
122 |
CMOS bulk-driven mixers with passive balunsVan Vorst, Daryl 11 1900 (has links)
The design, simulation, and measurement of two bulk-driven down-conversion mixers with on-chip
transformer baluns in 0.18 μm CMOS is presented. Applying either the RF signal or the
local oscillator (LO) signal to the bulk connection of the transistors allows the amplification and
switching stages of a conventional mixer to be combined into a single stage, thus improving the
voltage headroom of the mixer. The addition of a transformer balun to the mixers improves the
input impedance match, provides passive voltage gain, and performs single-ended to balanced
conversion. A semi-analytical power-series analysis of the mixers is also presented. The mixer in
which the RF signal is applied to the gates of the mixing transistors achieves a measured input-referred
1-dB compression point (P1dB) of −14 dBm, an input-referred third-order intercept
point (IIP3) of −5.2 dBm, a gain of 13.6 dB, a noise figure (NF) of 26 dB, and an LO-to-RF
isolation of 50 dB. The overall performance of both mixers is found to be comparable with
other CMOS mixers, but with a higher noise figure (which can be mitigated with a high gain
low-noise amplifier (LNA)).
|
123 |
Laboratory measurements of static and dynamic elastic properties in carbonateBakhorji, Aiman M Unknown Date
No description available.
|
124 |
Nanostructured Inverted Organic Photovoltaic CellsThomas, Michael Unknown Date
No description available.
|
125 |
Effect of paraplowing on soil properties and crop yield under irrigated management2015 March 1900 (has links)
Limitations on water infiltration and soil aeration through compaction processes have the potential to limit production in irrigated agricultural fields. This project was conducted to determine the impact of sub-soiling with a paraplow (Howard Rotavator) on soil physical properties and processes that are important in affecting soil-water relations and productivity. The paraplow was the subsoiler selected for use in this study because of its ability to loosen the soil at the depth of plowing while producing minimal surface disturbance. The research plots were located on Chernozem and Vertisol soils in the Brown soil zone in the Lake Diefenbaker irrigation district near Birsay, SK. Irrigated and dryland sites were used for comparison. Sub-soiling was able to consistently reduce bulk density of the soil and effects persisted for one to two years under normal precipitation conditions.
Excessively wet conditions (2010 and 2011) reduced the effectiveness of the sub-soiling. Tillage induced porosity in the soil was associated with a greater infiltration capacity measured in the field. Yield benefits in crops grown (canola, flax, wheat) from sub-soiling were variable under the wet conditions of 2010 and 2011. A greater benefit was observed under the normal precipitation conditions of 2012 on sites that were paraplowed in 2011. Subsoiling at a depth of 45cm and a row spacing of 45cm (manufacturer’s recommended configuration) was more effective than shallower depth and wider row spacing treatments. A significant yield benefit was only observed at the dryland site established in 2011, and limited yield benefit was observed in the irrigated sites. Over the three years of the study, annual yields from sub-soiling were on average about 5% higher than the un-tilled control. However, yield benefits were variable depending on crop and year. Given an estimated cost of subsoiling of ~$30 per acre, a benefit of sub-soiling that lasts one year would produce close to break-even conditions, and sub-soiling benefits that are consistent and last longer than one year are needed to be cost effective.
|
126 |
Kinetic theories of granular flowLun, Cliff Ki Keung. January 1985 (has links)
No description available.
|
127 |
CMOS bulk-driven mixers with passive balunsVan Vorst, Daryl 11 1900 (has links)
The design, simulation, and measurement of two bulk-driven down-conversion mixers with on-chip
transformer baluns in 0.18 μm CMOS is presented. Applying either the RF signal or the
local oscillator (LO) signal to the bulk connection of the transistors allows the amplification and
switching stages of a conventional mixer to be combined into a single stage, thus improving the
voltage headroom of the mixer. The addition of a transformer balun to the mixers improves the
input impedance match, provides passive voltage gain, and performs single-ended to balanced
conversion. A semi-analytical power-series analysis of the mixers is also presented. The mixer in
which the RF signal is applied to the gates of the mixing transistors achieves a measured input-referred
1-dB compression point (P1dB) of −14 dBm, an input-referred third-order intercept
point (IIP3) of −5.2 dBm, a gain of 13.6 dB, a noise figure (NF) of 26 dB, and an LO-to-RF
isolation of 50 dB. The overall performance of both mixers is found to be comparable with
other CMOS mixers, but with a higher noise figure (which can be mitigated with a high gain
low-noise amplifier (LNA)).
|
128 |
Some analytical solutions for probelms involving highly frictional granular materialsThamwattana, Ngamta. January 2004 (has links)
Thesis (Ph.D.)--University of Wollongong,2004. / Typescript. Bibliography: leaf 205-214.
|
129 |
Material flow optimization and systems analysis for biosolids management a study of the city of Columbus municipal operations /Sikdar, Kieran Jonah, January 2008 (has links)
Thesis (M.S.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 49-52).
|
130 |
Transport boundaries for pneumatic conveyingYi, Jianglin. January 2001 (has links)
Thesis (Ph.D.)--University of Wollongong, 2001. / Typescript. Bibliographical references: leaf 218-232.
|
Page generated in 0.0548 seconds