Spelling suggestions: "subject:"[een] CALL ADMISSION"" "subject:"[enn] CALL ADMISSION""
11 |
A simulation framework for service continuity over multi access wireless networksAbuhaija, Belal Saleh January 2010 (has links)
Mobile communication systems have continued to evolve by the release of new standards for HSPA and the release of new standards for LTE in release 8 and release 9. The new releases aim at providing higher data rates to accommodate the envisioned services of 3GPP in voice, data, image transmission, video, multimedia service and broadband services. Catering for a wide variety of services to satisfy the demands imposed on mobile networks by the user diversity and demanding applications, the air interface has been identified as the major bottleneck in the mobile networks. Network planning engineers and operators are deploying the new air interfaces in the same cell sites, which gives rise to several internetworking issues among the different air interfaces from radio resources management to service call continuity issues due to user's mobility and changing point of attachment. Deployment of different air interfaces coupled with traffic diversity requests further complicates the managements of the mobile networks. One of The main objectives of this research is to propose and evaluate solutions that address the internetworking of the different radio air interfaces in proposing a call admission control algorithm that can utilize different air interfaces capabilities and to determine which traffic types are better suited to be serviced by an interface. The proposed algorithm will consider the availability of the interface, the load of the network and the user equipment capabilities. Another main objective of this research is to propose and evaluate solutions that address changing the point of attachment of the users due to mobility in the form of handover algorithm. The proposed algorithm will consider the coverage of the node, direction and speed of the user, the network load, the air interface availability and the user equipment capabilities. Another main objective of this research is to design and implement a simulation system which includes all 3GPP standardized technologies. The simulation tool was designed as a discrete event simulation (DBS) system which includes all the standardized air interface technologies and services. The simulation tool was designed using Visual C# to take advantage of the object oriented capabilities of the Windows environment and libraries. The simulation tool was essential in evaluating the proposed algorithms in the first two objectives.
|
12 |
[en] RESOURCE ESTIMATION AND CALL ADMISSION IN COMMUNICATION NETWORKS / [pt] ESTIMAÇÃO DE RECURSOS E ADMISSÃO DE CHAMADAS EM REDES DE COMUNICAÇÕESRENATO MAGALHAES DUMONT 12 March 2002 (has links)
[pt] Este trabalho propõe um modelo de cálculo das
probabilidades de mobilidade dinâmica e um modelo de
mobilidade, que é aplicado a um método de controle de
admissão de chamadas para sistemas móveis celulares,
denominado shadows cluster. Este método busca priorizar
chamadas que estejam em handoff em relação a novas
chamadas. O objetivo desta técnica é uma melhor qualidade
para uma chamada em andamento, evitando-se a queda da
ligação. O objetivo do modelo proposto é reduzir a carga de
sinalização do sistema celular, comparada à obtida na
ausência desse modelo. Resultados de simulações mostram que
este objetivo do método do shadow cluster pode ser
atingido para vários cenários de mobildade. / [en] This work proposes a Dynamic Mobile Probability model and a
mobility model, which is applied for a call admission
control scheme for mobile cellular systems, called shadow
cluster. This scheme gives priority to calls that are in
handoff procedure. The objective of this scheme is a better
call in progress quality, avoiding the call dropping. The
objective of the proposed model is to reduce signalling
load of cellular system. Simulation results show that
indeed those objectives can be achived.
|
13 |
A BANDWIDTH ALLOCATION FRAMEWORK USING TIME ADAPTABILITY FOR MULTIMEDIA TRAFFIC IN WIRELESS AND MOBILE CELLULAR NETWORKSCHANDA, PRITAM 27 September 2005 (has links)
No description available.
|
14 |
A Class of Call Admission Control Algorithms for Resource Management and Reward Optimization for Servicing Multiple QoS Classes in Wireless Networks and Its ApplicationsYilmaz, Okan 17 December 2008 (has links)
We develop and analyze a class of CAC algorithms for resource management in wireless networks with the goal not only to satisfy QoS constraints, but also to maximize a value or reward objective function specified by the system. We demonstrate through analytical modeling and simulation validation that the CAC algorithms developed in this research for resource management can greatly improve the system reward obtainable with QoS guarantees, when compared with existing CAC algorithms designed for QoS satisfaction only.
We design hybrid partitioning-threshold, spillover and elastic CAC algorithms based on the design techniques of partitioning, setting thresholds and probabilistic call acceptance to use channel resources for servicing distinct QoS classes. For each CAC algorithm developed, we identify optimal resource management policies in terms of partitioning or threshold settings to use channel resources. By comparing these CAC algorithms head-to-head under identical conditions, we determine the best algorithm to be used at runtime to maximize system reward with QoS guarantees for servicing multiple service classes in wireless networks.
We study solution correctness, solution optimality and solution efficiency of the class of CAC algorithms developed. We ensure solution optimality by comparing optimal solutions achieved with those obtained by ideal CAC algorithms via exhaustive search. We study solution efficiency properties by performing complexity analyses and ensure solution correctness by simulation validation based on real human mobility data. Further, we analyze the tradeoff between solution optimality vs. solution efficiency and suggest the best CAC algorithm used to best tradeoff solution optimality for solution efficiency, or vice versa, to satisfy the system's solution requirements. Moreover, we develop design principles that remain applicable despite rapidly evolving wireless network technologies since they can be generalized to deal with management of 'resources' (e.g., wireless channel bandwidth), 'cells' (e.g., cellular networks), "connections" (e.g., service calls with QoS constraints), and "reward optimization" (e.g., revenue optimization in optimal pricing determination) for future wireless service networks.
To apply the CAC algorithms developed, we propose an application framework consisting of three stages: workload characterization, call admission control, and application deployment. We demonstrate the applicability with the optimal pricing determination application and the intelligent switch routing application. / Ph. D.
|
15 |
Quality Of Service Aware Dynamic Admission Control In Ieee 802.16j Non-transparent Relay NetworksKilic, Eda 01 February 2010 (has links) (PDF)
Today, telecommunication is improving rapidly. People are online anywhere anytime. Due to
increasing demand in communication, wireless technologies are progressing quickly trying to
provide more services in a wide range. In order to address mobility and connectivity requirements
of users in wide areas, Worldwide Interoperability for Microwave Access (Wimax) has
been introduced as a forth generation telecommunication technology.
Wimax, which is also called Metropolitan Area Network (MAN), is based on IEEE 802.16
standard where a Base Station (BS) provides last mile broadband wireless access to the end
users known as Mobile Stations (MS). However, in places where high constructions exist,
the signal rate between MS and BS decreases or even the signal can be lost completely due
to shadow fading. As a response to this issue, recently an intermediate node specification,
namely Relay Station, has been defined in IEEE 802.16j standard for relaying, which provides
both throughput enhancement and coverage extension. However, this update has introduced a
new problem / call admission control in non-transparent relay networks that support coverage
extension.
In this thesis, a Quality of Service (QoS) aware dynamic admission control algorithm for
IEEE 802.16j non-transparent relay networks is introduced. Our objectives are admitting
more service flows, utilizing the bandwidth, giving individual control to each relay station
(RS) on call acceptance and rejection, and finally not affecting ongoing service flow quality in
an RS due to the dense population of service flows in other RSs. The simulation results show
that the proposed algorithm outperforms the other existing call admission control algorithms.
Moreover, this algorithm can be interpreted as pioneer call admission control algorithm in
IEEE 802.16j non-transparent networks.
|
16 |
Optimal Call Admission Control Policies in Wireless Cellular Networks Using Semi Markov Decision ProcesNi, Wenlong January 2008 (has links)
No description available.
|
17 |
Common Radio Resource Management Strategies for Quality of Service Support in Heterogeneous Wireless NetworksCalabuig Soler, Daniel 12 March 2010 (has links)
Hoy en día existen varias tecnologías que coexisten en una misma zona formando un sistema heterogéneo. Además, este hecho se espera que se vuelva más acentuado con todas las nuevas tecnologías que se están estandarizando actualmente. Hasta ahora, generalmente son los usuarios los que eligen la tecnología a la que se van a conectar, ya sea configurando sus terminales o usando terminales distintos. Sin embargo, esta solución es incapaz de aprovechar al máximo todos los recursos. Para ello es necesario un nuevo conjunto de estrategias. Estas estrategias deben gestionar los recursos radioeléctricos conjuntamente y asegurar la satisfacción de la calidad de servicio de los usuarios.
Siguiendo esta idea, esta Tesis propone dos nuevos algoritmos. El primero es un algoritmo de asignación dinámica de recusos conjunto (JDRA) capaz de asignar recursos a usuarios y de distribuir usuarios entre tecnologías al mismo tiempo. El algoritmo está formulado en términos de un problema de optimización multi-objetivo que se resuelve usando redes neuronales de Hopfield (HNNs). Las HNNs son interesantes ya que se supone que pueden alcanzar soluciones sub-óptimas en cortos periodos de tiempo. Sin embargo, implementaciones reales de las HNNs en ordenadores pierden esta rápida respuesta. Por ello, en esta Tesis se analizan las causas y se estudian posibles mejoras.
El segundo algoritmo es un algoritmo de control de admisión conjunto (JCAC) que admite y rechaza usuarios teniendo en cuenta todas las tecnologías al mismo tiempo. La principal diferencia con otros algorimos propuestos es que éstos últimos toman las dicisiones de admisión en cada tecnología por separado. Por ello, se necesita de algún mecanismo para seleccionar la tecnología a la que los usuarios se van a conectar. Por el contrario, la técnica propuesta en esta Tesis es capaz de tomar decisiones en todo el sistema heterogéneo. Por lo tanto, los usuarios no se enlazan con ninguna tecnología antes de ser admitidos. / Calabuig Soler, D. (2010). Common Radio Resource Management Strategies for Quality of Service Support in Heterogeneous Wireless Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7348
|
18 |
Some Investigations on QoS in the Wireline-Wireless Network Interface ZoneTewari, Maneesh 03 1900 (has links)
In the next generation of networks we will begin to see the true convergence of voice, multimedia, and data traffic. This merging of various dedicated networks will occur both in the wired and wireless domains. Given the growth in the areas of wireless voice and data, we see that the combination of mobile and Internet communication constitutes the driving force behind the third-generation wireless system and makes the basis for the fourth-generation wireless system. For services like voice over IP over wireless (VoIPoW), the main challenge is to achieve QoS and spectrum efficiency. In order to support better QoS the IETF Mobile IP Working Group is discussing a number of enhancements to the base protocol to reduce the latency, packet loss and signaling overhead experienced during handoff. This support also includes both the call admission and the subsequent scheduling of packet transmissions.
In this thesis, we will first survey the work done on issues related to QoS provisioning for wireless network and then will address bandwidth allocation problem in packet radio network with special emphasis on wireline to wireless internetworking zone. The main aim of the thesis is to evolve a strategy to reduce the call dropping probability by negotiating the QoS in those conditions when we do not have the sufficient resources (mainly bandwidth) to allocate.
In order to achieve the QoS we have investigated the behaviour of the Real-time Voice traffic on a wireless link and its relation to the associated quality of service. This investigation opens a way for QoS negotiation, in a condition like during handoff, when the network is not able to sustain the negotiated bandwidth.
The main results of this work are, that even with reduced bandwidth, quality for speech can be maintained at a reasonable level and this way the call dropping can be reduced. Such a scheme is useful in those conditions when we do not have the sufficient bandwidth to allocate like during a handoff of a mobile host from one cell to another.
Moreover the bandwidth is a scarce resource in wireless domain so there should be an efficient call admission control policy. Many call admission control policies are proposed in the literature; here we propose a simple scheme for real-time traffic, specially speech, in a base station which increases the system throughput.
In addition to above, we have also experimented with Cellular IP, one of the implementations of proposed micro-mobility architecture to provide faster handoff and seamless mobility in wired and wireless network.
|
19 |
Gestion des ressources des réseaux mobiles de nouvelle génération par rapport à la mobilité des utilisateurs / Resource allocation in the next generation networks with the mobility of the usersIbrahimi, Khalil 20 November 2009 (has links)
Les systèmes de communications mobiles ont considérablement évolué durant ces dernières années. Ce fait a encouragé le déploiement de plusieurs systèmes ou réseaux cellulaires multi technologique. La qualité de service (QoS) offerte aux utilisateurs mobiles s’améliore d’un système à l’autre. Les systèmes de troisième génération (3G), comme l’UMTS, offrent une meilleure qualité de service par rapport à celle offerte par ceux de deuxième génération (2G), comme le GSM. Pour exemple, les systèmes de 3.5G (HSDPA) améliorent le débit du réseau de 3G sur le lien descendant afin de répondre aux exigences des nouveaux services. De plus, les réseaux de quatrième génération (4G), comme le WiMAX (IEEE802.16e) permettent, quant à eux, d’élargir la couverture cellulaire tout en offrant un débit supérieur. Cette nouvelle évolution améliore encore l’accessibilité aux services de l’Internet. La migration des services de l’Internet vers les réseaux mobiles, constitue un enjeu majeur de recherche en télécommunications. La thèse se divise en deux objectifs principaux ; le premier consiste à calculer et à évaluer les performances du système UMTS-WCDMA. Deux approches sont utilisées, l’approche exacte de l’analyse spectrale, et l’approche approximative de la perturbation singulière. Le deuxième objectif propose de nouveaux mécanismes de contrôle d’admission prenant en considération la mobilité intra et inter cellulaires des utilisateurs dans la gestion de la ressource radio. Ces mécanismes d’allocation de ressource concernent plus particulièrement les réseaux HSDPA et WiMAX. Ils se basent principalement sur les schémas de modulation et de codage adaptatif AMC (Adaptive Modulation and Coding) : la zone géographique est subdivisée en plusieurs régions concentriques. Avec nos mécanismes d’allocation des ressources, chaque appel accepté par le système voit son débit initial maintenu, et ce, indépendamment de la position de l’utilisateur dans la cellule / The mobile communication systems evolved considerably in the last few years. This fact encouraged the deployment of several systems or cellular networks in multi technological environment. The Quality of Service (QoS) offered to the mobile users improves from one system to another one. The systems of third generation (3G), like UMTS, offer a better quality of service compared to that offered by those of second generation (2G), like the GSM. For example, the systems of 3.5G (HSDPA) improve the throughput of the network of 3G in the downlink direction according to the requirements of the new services. Moreover, the networks of fourth generation (4G), like WiMax (IEEE802.16e), as for them, make it possible to widen the cover of the base station while offering a very important throughput in which supports the next generation applications or services already offered by the Internet. This new evolution still improves accessibility with the services of the Internet. The migration of the services of the Internet towards the mobile networks, constitutes a major stake of research in telecommunications. The thesis is divided into twomain aims. The first consists to compute the systemcapacity and to evaluate the performances of the UMTS-WCDMA system. Two approaches are used, one is of the spectral analysis, and other one is an approximation of the singular perturbation. The second goal of this thesis is to propose and develop the new mechanisms of call admission control (CAC) for HSDPA and IEEE802.16e networks based on the AMC (Adaptive Modulation and Coding) scheme : the geographical area of the cell is subdivided into several concentric regions. These CAC mechanisms maintain a same QoS (constant bit rate) for all users anywhere in the area of the cell and give priority to migrating or handoff calls by reserving the guard bandwidth than a new call in the intra cell and inter cell mobilities
|
20 |
Interactions Study of Self Optimizing Schemes in LTE Femtocell NetworksEl-murtadi Suleiman, Kais 06 December 2012 (has links)
One of the enabling technologies for Long Term Evolution (LTE) deployments is the
femtocell technology. By having femtocells deployed indoors and closer to the user,
high data rate services can be provided efficiently. These femtocells are expected
to be depolyed in large numbers which raises many technical challenges including
the handover management. In fact, managing handovers in femtocell environments,
with the conventional manual adjustment techniques, is almost impossible to keep
pace with in such a rapidly growing femtocell environment. Therefore, doing this
automatically by implementing Self Organizing Network (SON) use cases becomes a
necessity rather than an option. However, having multiple SON use cases operating
simultaneously with a shared objective could cause them to interact either negatively
or positively. In both cases, designing a suitable coordination policy is critical in
solving negative conflicts and building upon positive benefits.
In this work, we focus on studying the interactions between three self optimization
use cases aiming at improving the overall handover procedure in LTE femtocell
networks. These self optimization use cases are handover, Call Admission Control
(CAC) and load balancing. We develop a comprehensive, unified LTE compliant
evaluation environment. This environment is extendable to other radio access technologies
including LTE-Advanced (LTE-A), and can also be used to study other SON
use cases. Various recommendations made by main bodies in the area of femtocells
are considered including the Small Cell Forum, the Next Generation Mobile Networks (NGMN) alliance and the 3rd Generation Partnership Project (3GPP).
Additionally, traffic sources are simulated in compliance with these recommendations
and evaluation methodologies. We study the interaction between three representative
handover related self optimization schemes. We start by testing these schemes separately,
in order to make sure that they meet their individual goals, and then their
mutual interactions when operating simultaneously. Based on these experiments, we
recommend several guidelines that can help mobile network operators and researchers
in designing better coordination policies. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-12-05 22:35:27.538
|
Page generated in 0.0337 seconds