• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 34
  • 14
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 253
  • 253
  • 68
  • 65
  • 42
  • 40
  • 35
  • 32
  • 31
  • 31
  • 26
  • 26
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The use of geospatial technologies to quantify the effect of Hurricane Katrina on the vegetation of the weeks bay reserve

Murrah, Adam Wayne 11 August 2007 (has links)
This study looks at the changes to NDVI value in the Weeks Bay Reserve following the impact by Hurricane Katrina. Four Landsat images from March 24, 2005 (Pre-Katrina), September 16, 2005/ April 26, 2006 (Post-Katrina) and August 7, 2002 (Control) were classified into different landcover types and run with the NDVI vegetation index. Those images were compared against each other and showed that the September image had a NDVI value drop of 49% and the April image had a 47% drop as compared to the previous March. The emergent vegetation surrounding the shoreline was most susceptible to changes in NDVI value and recovered the slowest of the tested landcover types. Swift tracks, bay areas, and rivers in the study area where tested and showed that the rivers are the most susceptible change in NDVI value and recovered the slowest.
32

TESTING THE REGIONAL RELIABILITY OF SATELLITE-BASED CHANGE DETECTION METHODOLOGY OF ARCHAEOLOGICAL PHENOMENA: A MODEL OF DYNAMIC MONITORING

MAGEE, KEVIN S. January 2007 (has links)
No description available.
33

Identification of Gypsy Moth Defoliation in Ohio Using Landsat Data

Hurley, Angela Lorraine 31 July 2003 (has links)
No description available.
34

Determination of Change in Online Monitoring of Longitudinal Data: An Evaluation of Methodologies

Jokinen, Jeremy D. January 2015 (has links)
No description available.
35

Application on Lidar and Time Series Landsat Data for Mapping and Monitoring Wetlands

Kayastha, Nilam 09 January 2014 (has links)
To successfully protect and manage wetlands, efficient and accurate tools are needed to identify where wetlands are located, the wetland type, what condition they are in, what are the stressors present, and the trend in their condition. Wetland mapping and monitoring are useful to accomplish these tasks. Wetland mapping and monitoring with optical remote sensing data has mainly focused on using a single image or using image acquired over two seasons within the same year. Now that Landsat data are available freely, a multi-temporal approach utilizing images that span multiple seasons and multiple years can potentially be used to characterize wetland dynamics in more detail. In addition, newer remote sensing techniques such as Light Detection and Ranging (lidar) can provide highly detailed and accurate topographic information, which can improve our ability to discriminate wetlands. Thus, the overall objective of this study was to investigate the utility of lidar and multi-temporal Landsat data for mapping and monitoring of wetlands. My research is presented as three independent studies related to wetland mapping and monitoring. In the first study, inter-annual time series of Landsat data from 1985 to 2009 was used to map changes in wetland ecosystems in northern Virginia. Z-scores calculated on tasseled cap images were used to develop temporal profile for wetlands delineated by the National Wetland Inventory. A change threshold was derived based on the Chi-square distribution of the Z-scores. The accuracy of a change/no change map produced was 89% with a kappa value of 0.79. Assessment of the change map showed that the method used was able to detect complete wetland loss together with other subtle changes resulting from development, harvesting, thinning and farming practices. The objective of the second study was to characterize differences in spectro-temporal profile of forested upland and wetland using intra and inter annual time series of Landsat data (1999-2012). The results show that the spector-temporal metrics derived from Landsat can accurately discriminate between forested upland and wetland (accuracy of 88.5%). The objective of the third study was to investigate the ability of topographic variables derived from lidar to map wetlands. Different topographic variables were derived from a high resolution lidar digital elevation model. Random forest model was used to assess the ability of these variables in mapping wetlands and uplands area. The result shows that lidar data can discriminate between wetlands and uplands with an accuracy of 72%. In summary, because of its spatial, spectral, temporal resolution, availability and cost Landsat data will be a primary data source for mapping and monitoring wetlands. The multi-temporal approach presented in this study has great potential for significantly improving our ability to detect and monitor wetlands. In addition, synergistic use of multi-temporal analysis of Landsat data combined with lidar data may be superior to using either data alone for future wetland mapping and monitoring approaches. / Ph. D.
36

Forest Change Dynamics Across Levels of Urbanization in the Eastern US

Wu, Yi-Jei 03 September 2014 (has links)
The forests of the eastern United States reflect complex and highly dynamic patterns of change. This thesis seeks to explore the highly variable nature of these changes and to develop techniques that will enable researchers to examine their temporal and spatial patterns. The objectives of this research are to: 1) determine whether the forest change dynamics in the eastern US differ across levels of the urban hierarchy; 2) identify and explore key micropolitan areas that deviate from anticipated trends in forest change; and 3) develop and apply techniques for Big Data exploration of Landsat satellite images for forest cover analysis over large regions. Results demonstrate that forest change at the micropolitan level of urbanization differs from rural and metropolitan forest dynamics. The work highlights the dynamic nature of forest change within the Piedmont Atlantic megaregion, largely attributed to the forestry industry. This is by far the most dominant change phenomenon in the region but is not necessarily indicative of permanent forest change. A longer temporal analysis may be required to separate the contribution of the forest industry from permanent forest conversion in the region. Techniques utilized in this work suggest that emerging tools that provide supercomputing/parallel processing capabilities for the analysis of big satellite data open the door for researchers to better address different landscape signals and to investigate large regions at a high temporal and spatial resolution. The opportunity now exists to conduct initial assessments regarding spatio-temporal land cover trends in the southeast in a manner previously not possible. / Master of Science
37

Application of Spectral Change Detection Techniques to Identify Forest Harvesting Using Landsat TM Data

Chambers, Samuel David 12 August 2002 (has links)
The main objective of this study was to determine the spectral change technique best suited to detect complete forest harvests (clearcuts) in the Southern United States. In the pursuit of this objective eight existing change detection techniques were quantitatively evaluated and a hybrid method was also developed. Secondary objectives were to determine the impact of atmospheric corrections applied before the change detection, and the affect post-processing methods to eliminate small groups of misclassified pixels ("salt and pepper" effect) had on accuracy. Landsat TM imagery of Louisa County, Virginia was acquired on anniversary dates in both 1996 and 1998 (Path 16, Row 34), clipped to the study area boundary, and registered to one another. Previous to the change detection exercise, two levels of atmospheric corrections were applied to the imagery separately to produce three data sets. The three data sets were evaluated to determine what level of pre-processing is necessary for harvest change detection. In addition, eight change detection techniques were evaluated: 1) the 345 TM band differencing, 2) 35 TM band differencing, 3) NDVI differencing, 4) principal component 1 differencing, 5) selection of a change band in a multitemporal PCA, 6) tasseled cap brightness differencing, 7) tasseled cap greenness differencing, and 8) univariate differencing using TM band 7. A hybrid method that used the results from the eight previous techniques was developed. After performing the change detection, majority filters using window sizes of 3x3 pixels, 5x5 pixels, and 7x7 pixels were applied to the change maps to determine how eliminating small groups of misclassified pixels would affect accuracies. Accuracy assessments of the binary (harvested or not harvested) change maps were used to evaluate the accuracies of the various methods described using 256 validation points collected by the Virginia Department of Forestry. The atmospheric corrections did not seem to significantly benefit the change detection techniques, and in some cases actually degraded accuracies. Of the eight techniques applied to the original dataset, univariate differencing using TM band 7 performed the best with a 90.63% overall accuracy, while Tasseled Cap Greenness returned the worst result with an overall accuracy of 78.91%. Principal component 1 differencing and 35 differencing also performed well. The hybrid approach returned good results, but at its best returned an overall accuracy of 90.63%, matching the TM band 7 method. The majority filters using the 3x3 and 5x5 window sizes increased the accuracy in many cases, while the majority filter using the 7x7 window size degraded overall accuracy. / Master of Science
38

LAND COVER/USE CHANGE AND CHANGE PATTERN DETECTION USING RADAR AND OPTICAL IMAGES : AN INSTANCE OF URBAN ENVIRONMENT / レーダと光学画像を用いた土地被覆・利用の変化、変化形態の検出 : 都市環境の事例

Bhogendra Mishra 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18556号 / 工博第3917号 / 新制||工||1602(附属図書館) / 31456 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 田村 正行, 准教授 須﨑 純一, 教授 小池 克明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
39

Adaptive Radar with Application to Joint Communication and Synthetic Aperture Radar (CoSAR)

Rossler, Carl W., Jr 08 August 2013 (has links)
No description available.
40

Automatic information extraction and prediction of karst rocky desertification in Puding using remote sensing data

Wang, Guiwei January 2016 (has links)
Karst rocky desertification (KRD) is one kind of severe environmental problem existing in southwest of China. Reveal KRD condition is vital to solve the problem. A way to address the problem is by identifying KRD areas, so that policy-makers and researchers may get a better view of the issue and know where the areas affected by the problem are located. The study area is called Puding which is a county located in the central part of Guizhou province. Based on Landsat data, by using GIS and RS techniques, KRD information of Puding was extracted. Furthermore, the study monitored decades of change of the environmental problem in Puding and predicted possible condition in the future. Other researchers and decision makers may get a better view of the issue from the study results. In addition to Landsat data, other used data includes: ASTER Global digital elevation model data, Modis data, Google Earth data and other thematic maps. In the study, expert classification system and spectral features based model two methods were applied to extract KRD information and compare with each other. Their classified rules were taken from previous studies separately. Necessary preprocessing procedures such as atmospheric correction and geometrical correction were performed before extraction. After extraction relevant results were evaluated and analyzed. Predictions were made by cellular automata Markov module. Based on extracted KRD results, the distribution, percentage, change, and prediction of KRD conditions in Puding were presented. The results of the accuracy evaluation showed that the spectral features based model had acceptable performance. However, the KRD results extracted by expert classification system method were poor. The extracted KRD results, including KRD maps and the prediction map, both indicated that KRD areas in Puding were decreased from 1993 (spring) to 2016 (spring) and suggested to pay more attention to KRD areas changes with the seasons

Page generated in 0.0613 seconds