• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 18
  • 17
  • 15
  • 10
  • 6
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 227
  • 227
  • 67
  • 63
  • 34
  • 32
  • 30
  • 30
  • 30
  • 28
  • 27
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Pulse Shape Adaptation and Channel Estimation in Generalised Frequency Division Multiplexing Systems

Du, Jinfeng January 2008 (has links)
Orthogonal Frequency Division Multiplexing (OFDM) is well known as an efficient technology for wireless communications and is widely used in many of the current and upcoming wireless and wireline communication standards. However, it has some intrinsic drawbacks, e.g., sensitivity to the inter-carrier interference (ICI) and high peak-to-average power ratio (PAPR). Additionally, the cyclic prefix (CP) is not spectrum efficient and fails when the channel delay spread exceeds the length of CP, which will result in inter-symbol interference (ISI). In order to combat or alleviate these drawbacks various techniques have been proposed, which can be categorised into two main classes: techniques that keep the structure of OFDM and meanwhile increase the system robustness or re-organise the symbol streams on each sub-carrier, and techniques that increase the ISI/ICI immunity by adopting well designed pulse shapes and/or resorting to general system lattices. The latter class are coined as Generalised FDM (GFDM) throughout this thesis to distinguish with the former class. To enable seamless handover and efficient usage of spectrum and energy, GFDM is expected to dynamically adopt pulse shapes that are optimal in doubly (time and frequency) dispersive fading channels. This is however not an easy task as the method of optimal pulse shape adaptation is still unclear, let alone efficient implementationmethods. Besides, performance of GFDM highly depends on the channel estimation quality, which is not straightforward in GFDM systems. This thesis addresses, among many other aspects of GFDM systems, measures of the time frequency localisation (TFL) property, pulse shape adaptation strategy, performance evaluation and channel estimation.  We first provide a comparative study of state-of-the-art GFDM technologies and a brief overview of the TFL functions and parameters which will be used frequently in later analysis and discussion. A framework for GFDM pulse shape optimisation is formulated targeting at minimising the combined ISI/ICI over doubly dispersive channels. We also propose a practical adaptation strategy utilising the extended Gaussian functions (EGF) and discuss the trade-off between performance and complexity.  One realisation under the umbrella of GFDM, namely OFDM/OQAM, is intensively studied and an efficient implementation method by direct discretisation of the continuous time model has been proposed.  Besides, a theoretical framework for a novel preamble-based channel estimation method has been presented and a new preamble sequence with higher gain is identified. Under the framework, an optimal pulse shape dependent preamble structure together with a suboptimal but pulse shape independent preamble structure have been proposed and evaluated in the context of OFDM/OQAM. / QC 20101108
152

The Impact of Channel Estimation Error on Space-Time Block and Trellis Codes in Flat and Frequency Selective Channels

Chi, Xuan 22 July 2003 (has links)
Recently multiple antenna systems have received significant attention from researchers as a means to improve the energy and spectral efficiency of wireless systems. Among many classes of schemes, Space-Time Block codes (STBC) and Space-Time Trellis codes (STTC) have been the subject of many investigations. Both techniques provide a means for combatting the effects of multipath fading without adding much complexity to the receiver. This is especially useful in the downlink of wireless systems. In this thesis we investigate the impact of channel estimation error on the performance of both STBC and STTC. Channel estimation is especially important to consider in multiple antenna systems since (A) for coherent systems there are more channels to estimate due to multiple antennas and (B) the decoupling of data streams relies on correct channel estimation. The latter effect is due to the intentional cross-talk introduced into STBC. / Master of Science
153

Channel Prediction for Adaptive Modulation in Wireless Communications

Chan, Raymond 06 August 2003 (has links)
This thesis examines the benefits of using adaptive modulation and coding in terms of spectral efficiency and probability of bit error. Specifically, we examine the performance enhancement made possible by using linear prediction along with channel estimation in conjunction with adaptive modulation. We begin this manuscript with basic fundamentals of our study, followed by a detailed view of simulations, their results, and our conclusions from them. The study includes simulations in slow and moderately fast flat fading Rayleigh channels. We present our findings regarding the advantages of using predictive measures to foresee the state of the channel and make adjustments to transmissions accordingly. In addition to finding the general advantages of channel prediction in adaptive modulation, we explore various ways to adjust the prediction algorithm when we are faced with high Doppler rates and fast fading. By the end of this work, we should have a better understanding of when channel prediction is most valuable to adaptive modulation and when it is weakest, and how we can alleviate the problems that prediction will have in harsh environments. / Master of Science
154

Analysis of Jamming-Vulnerabilities of Modern Multi-carrier Communication Systems

Mahal, Jasmin Ara 19 June 2018 (has links)
The ever-increasing demand for private and sensitive data transmission over wireless networks has made security a crucial concern in the current and future large-scale, dynamic, and heterogeneous wireless communication systems. To address this challenge, wireless researchers have tried hard to continuously analyze the jamming threats and come up with improved countermeausres. In this research, we have analyzed the jamming-vulnerabilities of the leading multi-carrier communication systems, Orthogonal Frequency Division Multiplexing (OFDM) and Single-Carrier Frequency Division Multiple Access (SC-FDMA). In order to lay the necessary theoretical groundwork, first we derived the analytical BER expressions for BPSK/QPSK and analytical upper and lower bounds for 16-QAM for OFDMA and SC-FDMA using Pilot Symbol Assisted Channel Estimation (PSACE) techniques in Rayleigh slow-fading channel that takes into account channel estimation error as well as pilot-jamming effect. From there we advanced to propose more novel attacks on the Cyclic Prefix (CP) of SC-FDMA. The associated countermeasures developed prove to be very effective to restore the system. We are first to consider the effect of frequency-selectivity and fading correlation of channel on the achievable rates of the legitimate system under pilot-spoofing attack. With respect to jamming mitigation techniques, our approaches are more focused on Anti-Jamming (AJ) techniques rather than Low Probability of Intercept (LPI) methods. The Channel State Information (CSI) of the two transceivers and the CSI between the jammer and the target play critical roles in ensuring the effectiveness of jamming and nulling attacks. Although current literature is rich with different channel estimation techniques between two legitimate transceivers, it does not have much to offer in the area of channel estimation from jammer's perspective. In this dissertation, we have proposed novel, computationally simple, deterministic, and optimal blind channel estimation techniques for PSK-OFDM as well as QAM-OFDM that estimate the jammer channel to the target precisely in high Signal-to-Noise (SNR) environment from a single OFDM symbol and thus perform well in mobile radio channel. We have also presented the feasibility analysis of estimating transceiver channel from jammer's perspective at the transmitter as well as receiver side of the underlying OFDM system. / Ph. D. / Susceptibility to interferences is one of the major inherent vulnerabilities of open and pervasive wireless communications systems. The recent trends to more and more decentralized and ad-hoc communication systems that allow various types of network mobile terminals to join and leave simply add to this susceptibility. As these networks continue to flourish worldwide, the issues of privacy and security in wireless communication networks have become a major research problem. The increasingly severe hostile environments with advanced jamming threats has prompted the corresponding advancement in jamming detection and mitigation techniques. This dissertation has analyzed the jamming-vulnerabilities of the leading multi-carrier communication systems of the modern world. We have designed some novel jamming attacks and the corresponding countermeasures. The performance of these novel more-effective techniques are compared with their less-effective conventional counterparts. The information of the channel between the legitimate transmitter-receiver pair and between the jammer and the target play critical roles in ensuring the effectiveness of these smart jamming attacks. Although current literature is rich with different channel estimation techniques between the legitimate pair, it does not have much to offer in the area of channel estimation from jammer’s perspective. In this dissertation, we have proposed novel channel estimation techniques from jammer’s perspective.
155

Wide-area broadband private wireless communication system / 広域広帯域自営無線通信システム

Makino, Kiminobu 25 March 2024 (has links)
付記する学位プログラム名: 社会を駆動するプラットフォーム学卓越大学院プログラム / 京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25442号 / 情博第880号 / 新制||情||147(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 原田 博司, 教授 大木 英司, 教授 梅野 健, 教授 中村 公人 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
156

Sparse Bayesian Learning For Joint Channel Estimation Data Detection In OFDM Systems

Prasad, Ranjitha January 2015 (has links) (PDF)
Bayesian approaches for sparse signal recovery have enjoyed a long-standing history in signal processing and machine learning literature. Among the Bayesian techniques, the expectation maximization based Sparse Bayesian Learning(SBL) approach is an iterative procedure with global convergence guarantee to a local optimum, which uses a parameterized prior that encourages sparsity under an evidence maximization frame¬work. SBL has been successfully employed in a wide range of applications ranging from image processing to communications. In this thesis, we propose novel, efficient and low-complexity SBL-based algorithms that exploit structured sparsity in the presence of fully/partially known measurement matrices. We apply the proposed algorithms to the problem of channel estimation and data detection in Orthogonal Frequency Division Multiplexing(OFDM) systems. Further, we derive Cram´er Rao type lower Bounds(CRB) for the single and multiple measurement vector SBL problem of estimating compressible vectors and their prior distribution parameters. The main contributions of the thesis are as follows: We derive Hybrid, Bayesian and Marginalized Cram´er Rao lower bounds for the problem of estimating compressible vectors drawn from a Student-t prior distribution. We derive CRBs that encompass the deterministic or random nature of the unknown parameters of the prior distribution and the regression noise variance. We use the derived bounds to uncover the relationship between the compressibility and Mean Square Error(MSE) in the estimates. Through simulations, we demonstrate the dependence of the MSE performance of SBL based estimators on the compressibility of the vector. OFDM is a well-known multi-carrier modulation technique that provides high spectral efficiency and resilience to multi-path distortion of the wireless channel It is well-known that the impulse response of a wideband wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this thesis, we consider the estimation of the unknown channel coefficients and its support in SISO-OFDM systems using a SBL framework. We propose novel pilot-only and joint channel estimation and data detection algorithms in block-fading and time-varying scenarios. In the latter case, we use a first order auto-regressive model for the time-variations, and propose recursive, low-complexity Kalman filtering based algorithms for channel estimation. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the MSE and coded bit error rate performance. • Multiple Input Multiple Output(MIMO) combined with OFDM harnesses the inherent advantages of OFDM along with the diversity and multiplexing advantages of a MIMO system. The impulse response of wireless channels between the Nt transmit and Nr receive antennas of a MIMO-OFDM system are group approximately sparse(ga-sparse),i.e. ,the Nt Nr channels have a small number of significant paths relative to the channel delay spread, and the time-lags of the significant paths between transmit and receive antenna pairs coincide. Often, wire¬less channels are also group approximately-cluster sparse(ga-csparse),i.e.,every ga-sparse channel consists of clusters, where a few clusters have all strong components while most clusters have all weak components. In this thesis, we cast the problem of estimating the ga-sparse and ga-csparse block-fading and time-varying channels using a multiple measurement SBL framework. We propose a bouquet of novel algorithms for MIMO-OFDM systems that generalize the algorithms proposed in the context of SISO-OFDM systems. The efficacy of the proposed techniques are demonstrated in terms of MSE and coded bit error rate performance.
157

[en] CHANNEL ESTIMATION OVER POWER LINE COMMUNICATIONS SYSTEMS / [pt] ESTIMAÇÃO DE CANAL EM SISTEMAS DE COMUNICAÇÃO SOBRE LINHAS DE POTÊNCIA

RENATA BRAZ FALCAO DA COSTA 25 March 2008 (has links)
[pt] A utilização das linhas de potência para fins de comunicação vem recebendo grande atenção nos últimos anos, principalmente devido a grande demanda por serviços de telecomunicações. A grande virtude é que as linhas de potência para comunicação apresentam uma solução sem a necessidade de nova fiação. Além disso, apresentam saída de potência disponível em todos os cômodos de uma residência, onde o terminal de comunicação possa ser usado, são de fácil instalação e acima de tudo apresentam custo reduzido. Sendo assim a comunicação através de linhas de potência vem se mostrando uma solução viável na oferta de serviços de telecomunicações. Esta tese investigou os sistemas PLC no que diz respeito à estimação do canal. Foi desenvolvido um método paramétrico de estimação do canal PLC baseado no algoritmo EM (Expectation Maximization). Foi feita a avaliação de desempenho combinando modulação OFDM (Orthogonal Frequency Division Multiplexing), estimação do canal PLC e equalização, sendo utilizado como referencias os equalizadores ZF (Zero Forcing) e MMSE (Minimum Mean Square Error). / [en] The powerline communications systems have been receiving increasing attention in last few years. Power line communications presents a no new wires solution with the additional advantages of ubiquitous node availability, easy installation, and cost effectiveness. This thesis investigation the powerline estimation channel. It was presented parametric channel estimation method using EM (Expectation Maximization) algorithm. The performance using OFDM (Orthogonal Frequency Division Multiplexing), PLC Channel estimation and equalization was availability. The performance was studied using two equalization techniques Zero- Forcing and Minimum Mean Square Error.
158

[en] EQUALIZATION AND CHANNEL ESTIMATION IN OFDM TRANSMISSION SYSTEMS / [pt] EQUALIZAÇÃO E ESTIMAÇÃO DE CANAL EM SISTEMAS DE TRANSMISSÃO OFDM

AUREO SERRANO DE MARINS NETO 21 March 2006 (has links)
[pt] crescimento dos sistemas de comunicações móveis celulares e dos sistemas de rádio difusão de sinais de áudio e vídeo tem despertado grande interesse na pesquisa de novos métodos para a transmissão de sinais nestas redes. A necessidade de se transmitir dados em altas taxas, com significante eficiência no uso da largura de faixa de freqüências disponível, e por meio de um canal de propagação ruidoso e variante no tempo, constitui o principal problema para o desenvolvimento de novas técnicas de trasmissão de sinais. Dentro deste contexto, esta dissertação trata do uso dos conceitos de transmissão digital e filtragem adaptativa para a demodulação de sinais OFDM (Orthogonal Frequency Division Multiplexing). A equalização de sinais antes e após o estágio de DFT (Discrete Fourier Transform) no receptor e as técnicas de estimação de canal são o objeto principal de estudo deste trabalho. Os resultados dos experimentos são analisados em termos da taxa de erro de bit média obtida e da convergência dos algoritmos empregados nas etapas de equalização e estimação de canal no receptor. / [en] The growth of cellular mobile communication systems and audio and video broadcasting systems has stimulated great interest in the research of new methods for the signal transmission in these networks. The high rate data transmission, with significant efficiency in the use of the available bandwidth, in a noisy and time variant channel, constitutes the main problem for the development of new techniques for signal transmission. In this context, this dissertation deals with the use of the concepts of digital transmission and adaptive filtering for the demodulation of OFDM (Orthogonal Frequency Division Multiplexing) signals. The equalization pre and post DFT (Discrete Fourier Transform) in the receiver and the channel estimation techniques are the main object of study in this work. The results of the experiments are analyzed in terms of the mean bit error rate achieved and the convergence for the algorithms used in the stages of equalization and channel estimation in the receiver.
159

Improving Channel Estimation and Tracking Performance in Distributed MIMO Communication Systems

David, Radu Alin 29 April 2015 (has links)
This dissertation develops and analyzes several techniques for improving channel estimation and tracking performance in distributed multi-input multi-output (D-MIMO) wireless communication systems. D-MIMO communication systems have been studied for the last decade and are known to offer the benefits of antenna arrays, e.g., improved range and data rates, to systems of single-antenna devices. D-MIMO communication systems are considered a promising technology for future wireless standards including advanced cellular communication systems. This dissertation considers problems related to channel estimation and tracking in D-MIMO communication systems and is focused on three related topics: (i) characterizing oscillator stability for nodes in D-MIMO systems, (ii) the development of an optimal unified tracking framework and a performance comparison to previously considered sub-optimal tracking approaches, and (iii) incorporating independent kinematics into dynamic channel models and using accelerometers to improve channel tracking performance. A key challenge of D-MIMO systems is estimating and tracking the time-varying channels present between each pair of nodes in the system. Even if the propagation channel between a pair of nodes is time-invariant, the independent local oscillators in each node cause the carrier phases and frequencies and the effective channels between the nodes to have random time-varying phase offsets. The first part of this dissertation considers the problem of characterizing the stability parameters of the oscillators used as references for the transmitted waveforms. Having good estimates of these parameters is critical to facilitate optimal tracking of the phase and frequency offsets. We develop a new method for estimating these oscillator stability parameters based on Allan deviation measurements and compare this method to several previously developed parameter estimation techniques based on innovation covariance whitening. The Allan deviation method is validated with both simulations and experimental data from low-precision and high-precision oscillators. The second part of this dissertation considers a D-MIMO scenario with $N_t$ transmitters and $N_r$ receivers. While there are $N_t imes N_r$ node-to-node pairwise channels in such a system, there are only $N_t + N_r$ independent oscillators. We develop a new unified tracking model where one Kalman filter jointly tracks all of the pairwise channels and compare the performance of unified tracking to previously developed suboptimal local tracking approaches where the channels are not jointly tracked. Numerical results show that unified tracking tends to provide similar beamforming performance to local tracking but can provide significantly better nullforming performance in some scenarios. The third part of this dissertation considers a scenario where the transmit nodes in a D-MIMO system have independent kinematics. In general, this makes the channel tracking problem more difficult since the independent kinematics make the D-MIMO channels less predictable. We develop dynamics models which incorporate the effects of acceleration on oscillator frequency and displacement on propagation time. The tracking performance of a system with conventional feedback is compared to a system with conventional feedback and local accelerometer measurements. Numerical results show that the tracking performance is significantly improved with local accelerometer measurements.
160

Récepteurs avancés et nouvelles formes d'ondes pour les communications aéronautiques / Advanced receivers and waveforms for UAV/Aircraft aeronautical communications

Raddadi, Bilel 03 July 2018 (has links)
De nos jours, l'utilisation des drones ne cesse d'augmenter et de nombreuses études sont réalisées afin de mettre en place des systèmes de communication dronique destinés à des applications non seulement militaires mais aussi civiles. Pour le moment, les règles d'intégration des drones commerciaux dans l’espace aérien doivent encore être définies et le principal enjeu occupation est d'assurer une communication fiable et sécurisée. Cette thèse s’inscrit dans ce contexte de communication. Motivée par la croissance rapide du nombre des drones et par les nouvelles générations des drones commandés par satellite, la thèse vise à étudier les différents liens possibles qui relient le drone aux autres composants du système de communication. Trois principaux liens sont à mettre en place : le lien de contrôle, le lien de retour et le lien de mission. En raison de la rareté des ressources fréquentielles déjà allouées pour les futurs systèmes droniques, l'efficacité spectrale devient un paramètre crucial pour leur déploiement à grande échelle. Afin de mettre en place un système de communication par drones spectralement efficace, une bonne compréhension des canaux de transmission pour chacune des trois liaisons est indispensable, ainsi qu’un choix judicieux de la forme d’onde. Cette thèse commence par étudier les canaux de propagation pour chaque liaison : canaux de type muti-trajets avec ligne de vue directe, dans un contexte d’utilisation de drones à moyenne altitude et longue endurance (drones MALE). L’objectif de cette thèse est de proposer de nouveaux algorithmes de réception permettant d’estimer et égaliser ces canaux de propagation muti-trajets. Les méthodes proposées dépendent du choix de la forme d’onde. Du fait de la présence d’un lien satellite, les formes d’onde considérées sont de type mono-porteuse (avec un faible facteur de crête) : SC et EW-SCOFDM. L’égalisation est réalisée dans le domaine temporel (SC) ou fréquentiel (EW-SC-OFDM). L'architecture UAV prévoit l'implantation de deux antennes placées aux ailes. Ces deux antennes peuvent être utilisées pour augmenter le gain de diversité (gain de matrice de canal). Afin de réduire la complexité de l'égalisation des canaux, la forme d'onde EW-SC-OFDM est proposée et étudiée dans un contexte muti-antennes, dans le but d'améliorer l'endurance de l'UAV et d'accroître l'efficacité spectrale, une nouvelle technique de modulation est considérée: Modulation spatiale ( SM). Dans SM, les antennes de transmission sont activées en alternance. L'utilisation de la forme d'onde EW-SC-OFDM combinée à la technique SM nous permet de proposer de nouvelles structures modifiées qui exploitent l’étalement spectrale pour mieux protéger des bits de sélection des antennes émettrices et ainsi améliorer les performances du système. / Nowadays, several studies are launched for the design of reliable and safe communications systems that introduce Unmanned Aerial Vehicle (UAV), this paves the way for UAV communication systems to play an important role in a lot of applications for non-segregated military and civil airspaces. Until today, rules for integrating commercial UAVs in airspace still need to be defined, the design of secure, highly reliable and cost effective communications systems still a challenging task. This thesis is part of this communication context. Motivated by the rapid growth of UAV quantities and by the new generations of UAVs controlled by satellite, the thesis aims to study the various possible UAV links which connect UAV/aircraft to other communication system components (satellite, terrestrial networks, etc.). Three main links are considered: the Forward link, the Return link and the Mission link. Due to spectrum scarcity and higher concentration in aircraft density, spectral efficiency becomes a crucial parameter for largescale deployment of UAVs. In order to set up a spectrally efficient UAV communication system, a good understanding of transmission channel for each link is indispensable, as well as a judicious choice of the waveform. This thesis begins to study propagation channels for each link: a mutipath channels through radio Line-of-Sight (LOS) links, in a context of using Meduim Altitude Long drones Endurance (MALE) UAVs. The objective of this thesis is to maximize the solutions and the algorithms used for signal reception such as channel estimation and channel equalization. These algorithms will be used to estimate and to equalize the existing muti-path propagation channels. Furthermore, the proposed methods depend on the choosen waveform. Because of the presence of satellite link, in this thesis, we consider two low-papr linear waveforms: classical Single-Carrier (SC) waveform and Extented Weighted Single-Carrier Orthogonal Frequency-Division Multiplexing (EW-SC-OFDM) waveform. channel estimation and channel equalization are performed in the time-domain (SC) or in the frequency-domain (EW-SC-OFDM). UAV architecture envisages the implantation of two antennas placed at wings. These two antennas can be used to increase diversity gain (channel matrix gain). In order to reduce channel equalization complexity, the EWSC- OFDM waveform is proposed and studied in a muti-antennas context, also for the purpose of enhancing UAV endurance and also increasing spectral efficiency, a new modulation technique is considered: Spatial Modulation (SM). In SM, transmit antennas are activated in an alternating manner. The use of EW-SC-OFDM waveform combined to SM technique allows us to propose new modified structures which exploit exces bandwidth to improve antenna bit protection and thus enhancing system performances.

Page generated in 0.0392 seconds