Spelling suggestions: "subject:"[een] CLICK CHEMISTRY"" "subject:"[enn] CLICK CHEMISTRY""
151 |
Functionalization of poly(epsilon-caprolactone) and its macromolecular engineeringRiva, Raphael 20 April 2007 (has links)
Macromolecular engineering is one of the most powerful tools to control the molecular parameters, including architecture of polymers, and to improve their performances or to impart them new properties.
This contribution aims at reporting on a novel strategy for the macromolecular engineering of poly-ε-caprolactone (PCL) which is based on the use of functional ε-caprolactone, the α-chloro-ε-caprolactone (αClεCL). Indeed, αClεCL is a precursor of polymers and copolymers with εCL that bear pendant activated chlorides well suited to grafting from reaction. These (co)polyesters have been used as macroinitiators for the Atom Transfer Radical Polymerization (ATRP) of methyl methacrylate leading to the corresponding graft copolymer. They have also been involved in an Atom Transfer Radical Addition (ATRA) reaction with a series of olefins bearing different functional groups (hydroxyl, carboxylic acid and epoxy group) in order to functionalize the polyester backbone without deleterious degradation. ATRA of PEO chains with an unsaturation end groups has also been carried out in order to prepare PCL-g-PEO of different compositions to be used as stabilizers of polyester nanoparticles.
Combination of ring-opening polymerization of ε-caprolactone and the copper-catalyzed Huisgens [3+2] cycloaddition is a novel strategy for going a step further in the macromolecular engineering of poly-ε-caprolactone (PCL). This click reaction is very well-suited to the chemical modification of aliphatic polyesters because, its implementation under very mild conditions prevents chain degradation from occurring. Indeed, alkynes were cycloadded onto azide containing PCL at low temperature (35°C) in an organic solvent (DMF or THF). Originally, α-chloro-ε-caprolactone and ε-caprolactone were randomly copolymerized in toluene at room temperature followed by reaction of the activated chlorides with sodium azide.
In order to make a wide range of functional aliphatic polyesters available, poly(α-azide-ε-caprolactone-co-ε-caprolactone) copolyesters were reacted with a series of alkynes substituted by a functional group, e.g., hydroxyl, acrylate and quaternary ammonium salts, This strategy turned out to be efficient to synthesize for instance hydrophilic, photo-cross-linkable and hydrosoluble PCL. Moreover, a variety of graft copolymers were prepared by both the grafting from and the grafting onto techniques. Indeed, an ATRP initiator was attached onto PCL followed by polymerization of vinyl monomers, whereas alkyne endcapped PEO was cycloadded onto azide-containing PCL with formation of amphiphilic PCL-g-PEO copolymers.
Last but not least, the click chemistry was very instrumental in imparting an antimicrobial activity to PCL or for the preparation of new functionalized caprolactones.
|
152 |
Neue Ansätze zur Monomersequenzkontrolle in synthetischen Polymeren / New approaches for monomer sequence control in synthetic polymersPfeifer, Sebastian January 2011 (has links)
Von der Natur geschaffene Polymere faszinieren Polymerforscher durch ihre spezielle auf eine bestimmte Aufgabe ausgerichtete Funktionalität. Diese ergibt sich aus ihrer Bausteinabfolge uber die Ausbildung von Uberstrukturen. Dazu zählen zum Beispiel Proteine (Eiweiße), aus deren Gestalt sich wichtige Eigenschaften ergeben. Diese Struktureigenschaftsbeziehung gilt ebenso für funktionelle synthetische Makromoleküle. Demzufolge kann die Kontrolle der Monomersequenz in Polymeren bedeutend für die resultierende Form des Polymermoleküls sein.
Obwohl die Synthese von synthetischen Polymeren mit der Komplexität und der Größe von Proteinen in absehbarer Zeit wahrscheinlich nicht gelingen wird, können wir von der Natur lernen, um neuartige Polymermaterialien mit definierten Strukturen (Sequenzen) zu synthetisieren. Deshalb ist die Entwicklung neuer und besserer Techniken zur Strukturkontrolle von großem Interesse für die Synthese von Makromolekülen, die perfekt auf ihre Funktion zugeschnitten sind.
Im Gegensatz zu der Anzahl fortgeschrittener Synthesestrategien zum Design aus- gefallener Polymerarchitekturen – wie zum Beispiel Sterne oder baumartige Polymere (Dendrimere) – gibt es vergleichsweise wenig Ansätze zur echten Sequenzkontrolle in synthetischen Polymeren. Diese Arbeit stellt zwei unterschiedliche Techniken vor, mit denen die Monomersequenz innerhalb eines Polymers kontrolliert werden kann.
Gerade bei den großtechnisch bedeutsamen radikalischen Polymerisationen ist die Sequenzkontrolle schwierig, weil die chemischen Bausteine (Monomere) sehr reaktiv sind. Im ersten Teil dieser Arbeit werden die Eigenschaften zweier Monomere (Styrol und N-substituiertes Maleinimid) geschickt ausgenutzt, um in eine Styrolkette definierte und lokal scharf abgegrenzte Funktionssequenzen einzubauen. Uber eine kontrollierte radikalische Polymerisationsmethode (ATRP) wurden in einer Ein-Topf-Synthese über das N-substituierte Maleinimid chemische Funktionen an einer beliebigen Stelle der Polystyrolkette eingebaut. Es gelang ebenfalls, vier unterschiedliche Funktionen in einer vorgegebenen Sequenz in die Polymerkette einzubauen. Diese Technik wurde an zwanzig verschiedenen N-substituierten Maleinimiden getestet, die meisten konnten erfolgreich in die Polymerkette integriert werden.
In dem zweiten in dieser Arbeit vorgestellten Ansatz zur Sequenzkontrolle, wurde der schrittweise Aufbau eines Oligomers aus hydrophoben und hydrophilen Segmenten (ω-Alkin-Carbonsäure bzw. α-Amin-ω-Azid-Oligoethylenglycol) an einem löslichen Polymerträger durchgeführt. Das Oligomer konnte durch die geschickte Auswahl der Verknüpfungsreaktionen ohne Schutzgruppenstrategie synthetisiert werden. Der lösliche Polymerträger aus Polystyrol wurde mittels ATRP selbst synthetisiert. Dazu wurde ein Startreagenz (Initiator) entwickelt, das in der Mitte einen säurelabilen Linker, auf der einen Seite die initiierende Einheit und auf der anderen die Ankergruppe für die Anbindung des ersten Segments trägt. Der lösliche Polymerträger ermöglichte einerseits die schrittweise Synthese in Lösung. Andererseits konnten überschüssige Reagenzien und Nebenprodukte zwischen den Reaktionsschritten durch Fällung in einem Nicht-Lösungsmittel einfach abgetrennt werden. Der Linker ermöglichte die Abtrennung des Oligomers aus jeweils drei hydrophoben und hydrophilen Einheiten nach der Synthese. / Polymer scientists are impressed by polymers created by nature. This is caused by their structure which is aimed to fulfill very special functions. The structure is primary built by sequential covalent linking of building units. Secondly, supramolecular aggregation leads to three-dimensional alignment. The sequence of the building blocks has a high influence on the higher molecular arrangement. Proteins are only one example for supramolecular structures which have special functions because of their supramolecular arrangement. This structure-property relationship is also possible for synthetic polymers. For this reason the control of monomer sequences in synthtic polymers is just as important for the resulting structure of a synthetic polymer molecule.
Even though the synthesis of polymers with complex strucures and sizes as in nature is impossible in near future. But the development of new and better techniques for sequence control in synthetic polymers is of high importance to create well defined macromolecular structures which are tailor-made for their function.
In contrast to a lot of advanced synthethis strategies for the design of complex polymer architechtures (e.g. brushes, stars, or dendrimers) their are less approaches for a monomer sequence control in synthetic polymers. This work presents two different techniques for controlling the monomer sequence inside a polymer.
Especially in technologically significant radical polymerization it is difficult to control the monomer sequence because radical species are very reactive and the addition of a monomer to the radical function is not selective. The first approach makes use of the properties of two monomers (styrene and N-substituted maleimides) to add chemical funtions locally inside a polystyrene chain. By addition of N-functionalized maleimides during the polymerization of styrene chemical functions could be added at any desired position inside the polystyrene chain. This technique was tested on 20 different N-substituted maleimides. Most of them were incorporated successfully into the polymer chain.
The second monomer sequence control approach is a stepwise synthesis of an oligomer made of short alternating hydrophobic and hydrophilic segments on a soluble polymer support. Two building blocks were used: ω-alkyne carboxylic acid (A-B) and α-amine-ω-azide oligoethylene glycol (C-D). The linking of the segments was done by applying two very efficient chemical reactions, namely 1,3-dipolar cycloaddition of terminal alkynes (A) and azides (D) and amidification of carboxylic acids (B) with primary amines (C). These two reactions proceed chemoselectively in an ABCD multifunctional mixture without a protection chemistry strategy.
The polystyrene support was synthesized by atom transfer radical polymerization (ATRP) in the presence of an azido-functionalized ATRP initiator containing a labile p-alkoxybenzyl ester linker. Depending on the choise of solvent, the soluble polymer support was used in solution during the coupling reactions or was precipitated for an easy removal of excessive reagents and by-products. The acid-labile linker could be cleaved by trifluoroacetic acid treatment to obtain a hydrophilic/hydrophobic block copolymer.
|
153 |
Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applicationsHed, Yvonne January 2013 (has links)
The development of materials for advanced applications requires innovative macromolecules with well-defined structures and the inherent ability to be tailored in a straightforward manner. Dendrimers, being a subgroup of the dendritic polymer family, possess properties which fulfill such demands. They have a highly branched architecture with a high number of functional groups and are one of the most well-defined types of macromolecules ever synthesized. However, despite their well-defined nature and high functional density, traditional dendrimers commonly lack diverse chemical functionalities. Therefore, this thesis focuses on the synthesis of more complex dendritic materials to extend their tailoring capacity by introduction of dualfunctionalities for multipurpose actions. It covers the synthesis of dualfunctional dendrimers, dendritic modification of linear poly(ethylene glycol) polymers and cellulose surfaces, and the synthesis of linear dendritic hybrids. The building blocks enabling this synthesis, AB2C monomers, were also developed during this work. The orthogonal nature between click groups (azide, alkyne and alkene) and hydroxyl groups have efficiently been utilized for postfunctionalization by robust click chemistry and traditional esterification reactions. Furthermore, linear dendritic hybrids were synthesized, merging the properties of linear and dendritic macromolecules. The dendritic frameworks were tailored towards the production of bone fracture adhesives, novel biofunctional dendritic hydrogels, biosensors and micellar drug delivery vehicles. / Utveckling av material för avancerade applikationer kräver innovativa makromolekyler med väldefinierade strukturer och som kan skräddarsys på ett enkelt sätt. Dendrimerer är en undergrupp av dendritiska polymerer vars egenskaper uppfyller dessa krav. De har en mycket förgrenad arkitektur med många funktionella grupper och är en av de mest väldefinierade befintliga syntetiska makromolekylerna. Trots dess väldefinierade karaktär och höga funktionalitet saknar ofta traditionella dendrimerer multipla kemiska funktionaliteter. Denna avhandling fokuserar därför på syntesen av mer komplexa dendritiska material för att förbättra deras kapacitet att skräddarsys, detta görs genom att introducera fler funktionaliteter som kan utnyttjas för multipla ändamål . Avhandlingen redogör för syntesen av difunktionella dendrimerer, dendritiska modifikationer av polyetylenglykol och cellulosaytor samt syntes av traditionella dendritiska hybrider. Byggstenarna som möjliggör syntesen, AB2C monomerer, framställdes också under detta arbete. Den ortogonala karaktären mellan klick grupper (azid, alkyn och alkene) och hydroxylgrupper har utnyttjats effektivt för funktionaliseringar genom användande av robust ”Click”-kemi och traditionella esterifikationsreaktioner. Vidare tillverkades de linjära dendritiska hybrider för att kombinera egenskaperna hos både linjära och traditionella dendritiska polymerer i en och samma makromolekyl. Samtliga dendritiska strukturer skräddarsyddes för applikationer så som benlimmer, biofunktionella dendritiska hydrogeler, biosensorer och läkemedels-bärande miceller. / <p>QC 20130830</p>
|
154 |
Development of Antimicrobial Agent with Novel Mechanisms of Actions and 1,2,4,5-Tetrazine Click Chemistry and its Application in DNA Postsynthetic FunctionalizationChen, Weixuan 07 December 2012 (has links)
SecA ATPase is a critical member of the Sec system, which is important in the translocation of membrane and secreted polypeptides/proteins in bacteria. Small molecule inhibitors can be very useful research tools as well as leads for future antimicrobial agent development. Based on previous virtual screening work, we optimized the structures of two hit compounds and obtained SecA ATPase inhibitors with IC50 in the single digit micromolar range. These represent the first low micromolar inhibitors of bacterial SecA and will be very useful for mechanistic studies. Post synthetic modification is an important and efficient way of DNA functionalization especially in DNA aptamer selection. In this research, the feasibility of norbornene (Neo) modified thymidine triphosphate incorporation was described. Besides, substituted tetrazines have been found to undergo facile inversed electron demand Diels-Alder reactions with "tunable" reaction rates. This finding paves the way to utilize tetrazine conjugation reactions for not only DNA but also other labeling work.
|
155 |
Orthogonal functionalization strategies in polymeric materialsYang, Si Kyung 31 August 2009 (has links)
This thesis describes original research aimed at the development of highly efficient polymer functionalization strategies by introducing orthogonal chemistry within polymeric systems. The primary hypothesis of this thesis is that the use of click chemistries or noncovalent interactions can provide new and easy pathways towards the synthesis of highly functionalized polymers thereby addressing the shortcomings of traditional covalent functionalization approaches. To verify the hypothesis, the work presented in the following chapters of this thesis further explores previous methods of either covalent or noncovalent polymer functionalization described in Chapter 1.
Chapters 2 and 3 present advanced methods of covalent polymer functionalization based on high-yielding and orthogonal click reactions: 1,3-dipolar cycloaddition, hydrazone formation, and maleimide-thiol coupling. All three click reactions employed can be orthogonal to one another and conversions can be quantitative, leading to the easy and rapid synthesis of highly functionalized polymers without interference among functional handles along the polymer backbones.
The next two chapters focus on the noncovalent functionalization strategies for creating supramolecular block copolymers via the main-chain self-assembly of telechelic polymers. Novel synthetic methods to prepare telechelic polymers bearing terminal recognition motifs were developed through a combination of ROMP using functionalized ruthenium initiators and functionalized chain-terminators, and the resulting polymers were self-assembled to form supramolecular block copolymers. Chapter 4 demonstrates the formation of supramolecular multiblock copolymers via self-assembly of symmetrical telechelic polymers using metal coordination, while Chapter 5 demonstrates that supramolecular ABC triblock copolymers can be prepared by the self-assembly of a heterotelechelic polymer as the central block with two other complementary monotelechelic polymers using two orthogonal hydrogen bonding interactions.
Chapter 6 presents a unique application of noncovalent functionalization approaches. The ultimate goal of this research is to develop a controlled polymerization method based on noncovalent templation. The initial attempts at the metal coordination-based template polymerization are presented in this chapter.
Finally, Chapter 7 summarizes the findings in each chapter and presents the potential extensions of the orthogonal functionalization strategies developed in this thesis.
|
156 |
Alkinhaltige Blockcopolymere und ihre Modifizierung mittels 1,3-dipolarer CycloadditionFleischmann, Sven 27 August 2008 (has links) (PDF)
In der vorliegenden Dissertation wurden mittels kontrolliert radikalischer Polymerisationstechniken alkinhaltige Blockcopolymere synthetisiert. In effizienten Cu(I)-katalyisierten 1,3-dipolaren Cycloadditionen (Click-Chemie) wurde diese modifiziert. Insbesondere durch die Addition dendritischer Verbindungen gelang die Darstellung nanosopischer Objekte. Darüber hinaus konnten dünne Filme phasenseparierten Blockcopolymere selektiv und ortsaufgelöst funktionalisiert werden. Die Arbeit liefert somit Beiträge zur Entwicklung neuartiger Nanomaterialien sowie ihrer Modifizierung.
|
157 |
Click-Chemie für die Radiofluorierung von Peptiden, Proteinen und OligonukleotidenRamenda, Theres 15 October 2010 (has links) (PDF)
Die Radiomarkierung biologisch relevanter Verbindungen mit dem Radionuklid 18F erlaubt Untersuchungen mit Hilfe der Positronen-Emissions-Tomographie (PET). Mit Hilfe der PET werden quantitative Informationen über die räumliche und zeitliche Verteilung von Radiotracern im lebenden Organismus erhalten. Diese Radiotracer sind Grundlage für die in vivo-Erforschung der Physiologie des menschlichen Organismus, sowie zur Aufklärung und Nachverfolgung pathologischer Prozesse. Neben bekannten Ansätzen der Acylierung, Thioetherbildung und Hydrazonbildung ist es notwendig neue Markierungsmethoden zu entwickeln, um Probleme bei Markierungsreaktionen, wie niedrige Ausbeuten und Denaturierung empfindlicher biologisch relevanter Moleküle, zu umgehen. Die vorliegende Arbeit beschäftigt sich mit der Evaluation der Click-Chemie, speziell der 1,3 dipolaren [3+2]Cycloaddition von Alkin- und Azid-Derivaten als neue, alternative Reaktion zur Markierung von biologisch relevanten Molekülen.
Ziel der Arbeit war es einen 18F markierten, bifunktionellen Markierungsbaustein, versehen mit einer Alkinfunktion durch eine vollautomatisierte Synthese (Modulsynthese) herzustellen. Ein Peptid, ein Protein und ein Oligonukleotid als biologisch relevante Moleküle, sollten mit einer Azidfunktionalität versehen werden. Mit Hilfe eines geeigneten Katalysator-Ligandsystems sollten ein bifunktioneller Markierungsbaustein, sowie ein azidfunktionalisiertes biologisch relevantes Molekül miteinander gekuppelt werden unter Verwendung der 1,3-dipolaren [3+2]Cycloaddition. Die untersuchte Methode sollte mit anderen Markierungsmethoden verglichen werden.
Es wurde eine Modulsynthese zur einfachen, schnellen und vollautomatisierten Herstellung eines alkinfunktionalisierten Synthesebausteins, 4-[18F]Fluor-N-methyl-N-(prop-2-inyl)benzolsulfonamid, p[18F]F SA, entwickelt. Dieser basiert auf einem Sulfonamid-Derivat und ist mit dem Positronenstrahler 18F gekuppelt. Ausgehend von einer Trimethylammonium-Markierungsvorstufe kann das p[18F]F SA mit einer radiochemischen Ausbeute von 27-40% und einer radiochemischen Reinheit >99% innerhalb von 80 min hergestellt werden. Die Reaktion läuft in Sulfolan bei 80°C innerhalb von 10 min ab. Das Produkt liegt aufgrund der HPLC-Reinigung mit einem hohen Reinheitsgrad (RCR >99%) vor und weist eine spezifische Aktivität von 120 570 GBq/µmol auf.
p[18F]F SA eignet sich zur Markierung von biologisch relevanten Molekülen, da es unter den Markierungsbedingungen der Cycloaddition stabil ist und eine für das Arbeiten im wässrigen Milieu günstige Lipophilie (logP = 1,7) aufweist.
Die verschiedenen Beispiele der drei Verbindungsklassen werden mit einer Azidfunktion versehen. Ein Phosphopeptid (H-MQSpTPL-OH), HSA und ein Aminohexylspacer tragendes Oligonukleotid (NH2 (CH2)6 pCCG CAC CGC ACA GCC GC) werden mit Succinimidyl-5-azidvalerat umgesetzt, wodurch eine Funktionalisierung an den Aminogruppen erfolgt. Während das Phosphopeptid und das Oligonukleotid einfach azidfunktionalisiert vorliegen, werden durch diese Methode 27 Azidreste an das HSA angebracht. Damit stehen Alkin- und Azid-Derivat für die Cycloaddition zur Verfügung.
Das Phosphopeptid konnte mit einer Ausbeute von 29% innerhalb von 45 min hergestellt werden. Als Katalysator-Ligandsystem wird ein Gemisch aus Kupfersulfat und Natriumascorbat in Boratpuffer (pH = 8,4) eingesetzt. Man geht von 0,3-0,4 mg der peptidischen Markierungsvorstufe aus. Die Methode wurde mit der [18F]SFB-Markierung des Phosphopeptids verglichen. Man erhält ähnliche Ausbeuten und Reinheiten bei ähnlichen Reaktionsbedingungen. Ein wesentlicher Vorteil ist die Höhe der spezifischen Aktivität des eingesetzten p[18F]F SA, die bis zu zehnfach höher ist, als die des [18F]SFB. Das führt vermutlich zu einem ähnlichen Unterschied der spezifischen Aktivitäten der markierten Peptide, die jedoch nicht genau bestimmt wurden. Auch sind die Reaktionszeiten zur Peptidmarkierung bei Nutzung von p[18F]F SA um ein Drittel geringer. Das führt zur Verminderung der gesamten Synthesezeit.
Die Markierung von azidfunktionalisiertem HSA (Beispielprotein) erfolgt mit einer radiochemischen Ausbeute von 57% innerhalb von ca. 45 min. Als Katalysator-Ligandsystem wird ein Komplex aus TBTA und Kupfer(I)-Ionen in Phosphatpuffer (pH = 7,4) / Dimethylsulfoxid verwendet. Die Masse der eingesetzten Markierungsvorstufe beträgt 0,3 mg. Ein Vergleich der Markierungsmethode erfolgte mit der Markierung mit den bifunktionellen Markierungsbausteinen [18F]SFB und [18F]FBA. Bei gleicher Proteinkonzentration ist der Umsatz von p[18F]F SA mit 94% am höchsten. Die Reaktion des hydrazinfunktionalisierten HSA mit [18F]FBA erfordert Temperaturen von 50-60°C, um einen Umsatz des Markierungsbausteins in ähnlicher Höhe wie bei Markierungen mit p[18F]F SA und [18F]SFB zu erreichen. Die Bedingungen für die Markierung mit [18F]SFB weicht dahingehend ab, dass ein pH Wert von 8,4 angewandt wird um eine Markierung zu erreichen. Grund ist die Notwendigkeit der Deprotonierung der im HSA vorhandenen, bei niedrigeren pH Werten protonierten Aminogruppen. Das limitiert die Reaktion auf einen Bereich um diesen pH-Wert.
Die Untersuchung der Markierung von Oligonukleotiden ergab, dass ebenfalls ein Komplex aus TBTA und Kupfer(I)-Ionen notwendig ist. Als Lösungsmittel dient ein Gemisch aus 1 M Natriumhydrogencarbonat-Lösung, Acetonitril und Dimethylsulfoxid (14:5:1). Nach 20 min Reaktionszeit bei 10°C kann das Produkt mit einem Anteil von 30% im Reaktionsgemisch nachgewiesen werden. Damit ist nachgewiesen, dass auch die Markierung von Oligonukleotiden unter milden Bedingungen mit dieser Reaktion möglich ist.
Zusammenfassend kann man feststellen, dass sich die Click-Reaktion hervorragend für die schonende Markierung der biologisch relevanten Moleküle Phosphopeptid, HSA und Oligonukleotid eignet. TBTA wirkt während der Reaktion als Chelatbildner für die Kupfer(I)-Ionen und verhindert somit eine Bindung an die zu markierenden Moleküle oder deren Zersetzung. Damit wird die Stabilität der biologisch relevanten Moleküle gewährleistet und bei in vivo-Anwendung, das Einbringen cytotoxischen Kupfers verhindert.
Im Zuge der Untersuchungen wurde ein Vergleich der Markierungsreaktionen Acylierung, Thioetherbildung, sowie Hydrazon- und Oximbildung durchgeführt. Die bifunktionellen Markierungsbausteine [18F]SFB, [18F]FBAM und [18F]FBA wurden dafür herangezogen. Die 1,3-dipolare [3+2]Cycloaddition unterscheidet sich von den zum Vergleich herangezogenen Reaktionen. Sie vereint die positiven Eigenschaften der anderen Markierungsreaktionen in sich:
• Die Reaktion läuft unter milden Reaktionsbedingungen ab.
• Der verwendete Markierungsbaustein p[18F]F SA ist unter den Markierungsbedingungen stabil und lässt sich in einer Einschrittsynthese mit Hilfe eines vollautomatisierten Synthesemoduls einfach in hohen Ausbeuten und Reinheiten, sowie mit einer hohen spezifischen Aktivität herstellen.
Damit erweitert die 1,3 dipolare [3+2]Cycloaddition das Spektrum der Markierungsreaktionen und bietet das Potential zur Markierung verschiedenster biologisch relevanter Moleküle.
|
158 |
Methyltransferases as tools for sequence-specific labeling of RNA and DNA / RNR ir DNR specifinis žymėjimas panaudojant metiltransferazesTomkuvienė, Miglė 09 December 2013 (has links)
Investigation of RNA and DNA function often requires sequence-specific incorporation of various reporter and affinity probes. This can be achieved using AdoMet-dependent methyltransferases (MTases) as they can be active with synthetic AdoMet analogues equipped with transferable chains larger than the methyl group. These chains usually carry reactive groups that can be further chemically appended with required reporters. For this, azide-alkyne 1,3-cycloaddition (AAC), also called “click”, reaction is particularly attractive. This work shows that the HhaI cytosine-5 DNA MTase (variant Q82A/Y254S/N204A) catalyzes efficient sequence-specific transfer of hex-2-ynyl side chains containing terminal alkyne or azide groups from synthetic cofactor analogues to DNA. Both the enzymatic transfer and subsequent “click” coupling of a fluorophore can be performed even in cell lysates. For RNA labeling, the activity of an archaeal RNA 2‘-O-MTase C/D ribonucleoprotein complex (RNP) with synthetic cofactors was investigated. It was shown that synthetically reprogrammed guide RNA sequences can be used to direct the C/D RNP-dependent transfer of a prop-2-ynyl group to predetermined nucleotides in substrate RNAs. Followed by AAC this can be used for programmable sequence-specific labeling of a variety of RNA substrates in vitro. These new possibilities for specific labeling of nucleic acids can be adopted in biochemistry, biomedical, nanotechnology, etc. research. / Tiriant DNR ir RNR, neretai svarbu prijungti įvairius reporterinius ar giminingumo žymenis griežtai apibrėžtose (sekos) vietose – t.y. specifiškai. Tam galima pasitelkti fermentus metiltransferazes (MTazes). Natūraliai jos naudoja kofaktorių AdoMet, tačiau gali būti aktyvios ir su sintetiniais jo analogais, turinčiais ilgesnes nei metil- pernešamas grandines. Jei šios grandinės turi galines funkcines grupes, prie jų vėliau cheminių reakcijų pagalba galima prijungti norimus žymenis. Tam itin patogi azidų-alkinų cikloprijungimo (AAC), dar vadinama „click“, reakcija.
Šiame darbe parodyta, kad DNR citozino-5 MTazė HhaI (variantas Q82A/Y254S/N204A) efektyviai katalizuoja sekai specifinę heks-2-inil- grandinių, turinčių galines alkinil- arba azido- grupes, pernašą nuo sintetinių kofaktorių ant DNR. Naudojant šią MTazės-kofaktorių sistemą bei AAC, visą specifinio DNR žymėjimo procesą galima atlikti netgi ląstelių lizate. RNR žymėjimui ištirtas archėjų RNR 2‘-O-MTazės C/D ribonukleoproteininio komplekso aktyvumas su sintetiniais kofaktoriais. Parodyta galimybė sintetiškai keičiant kreipiančiąją RNR, prop-2-inilgrupės pernašą nukreipti į norimas įvairių substratinių RNR sekos vietas ir po to AAC reakcijos pagalba prijungti fluoroforą. Taigi, sukurtas naujas molekulinis įrankis, leidžiantis be suvaržymų pasirinkti norimą pažymėti RNR seką. Šios naujos specifinio nukleorūgščių žymėjimo galimybės gali būti pritaikytos biochemijos, biomedicinos, nanotechnologijų ir kitose tyrimų srityse... [toliau žr. visą tekstą]
|
159 |
RNR ir DNR specifinis žymėjimas panaudojant metiltransferazes / Methyltransferases as Tools for Sequence-Specific Labeling of RNA and DNATomkuvienė, Miglė 09 December 2013 (has links)
Tiriant DNR ir RNR, neretai svarbu prijungti įvairius reporterinius ar giminingumo žymenis griežtai apibrėžtose (sekos) vietose – t.y. specifiškai. Tam galima pasitelkti fermentus metiltransferazes (MTazes). Natūraliai jos naudoja kofaktorių AdoMet, tačiau gali būti aktyvios ir su sintetiniais jo analogais, turinčiais ilgesnes nei metil- pernešamas grandines. Jei šios grandinės turi galines funkcines grupes, prie jų vėliau cheminių reakcijų pagalba galima prijungti norimus žymenis. Tam itin patogi azidų-alkinų cikloprijungimo (AAC), dar vadinama „click“, reakcija.
Šiame darbe parodyta, kad DNR citozino-5 MTazė HhaI (variantas Q82A/Y254S/N204A) efektyviai katalizuoja sekai specifinę heks-2-inil- grandinių, turinčių galines alkinil- arba azido- grupes, pernašą nuo sintetinių kofaktorių ant DNR. Naudojant šią MTazės-kofaktorių sistemą bei AAC, visą specifinio DNR žymėjimo procesą galima atlikti netgi ląstelių lizate. RNR žymėjimui ištirtas archėjų RNR 2‘-O-MTazės C/D ribonukleoproteininio komplekso aktyvumas su sintetiniais kofaktoriais. Parodyta galimybė sintetiškai keičiant kreipiančiąją RNR, prop-2-inilgrupės pernašą nukreipti į norimas įvairių substratinių RNR sekos vietas ir po to AAC reakcijos pagalba prijungti fluoroforą. Taigi, sukurtas naujas molekulinis įrankis, leidžiantis be suvaržymų pasirinkti norimą pažymėti RNR seką. Šios naujos specifinio nukleorūgščių žymėjimo galimybės gali būti pritaikytos biochemijos, biomedicinos, nanotechnologijų ir kitose tyrimų srityse... [toliau žr. visą tekstą] / Investigation of RNA and DNA function often requires sequence-specific incorporation of various reporter and affinity probes. This can be achieved using AdoMet-dependent methyltransferases (MTases) as they can be active with synthetic AdoMet analogues equipped with transferable chains larger than the methyl group. These chains usually carry reactive groups that can be further chemically appended with required reporters. For this, azide-alkyne 1,3-cycloaddition (AAC), also called “click”, reaction is particularly attractive. This work shows that the HhaI cytosine-5 DNA MTase (variant Q82A/Y254S/N204A) catalyzes efficient sequence-specific transfer of hex-2-ynyl side chains containing terminal alkyne or azide groups from synthetic cofactor analogues to DNA. Both the enzymatic transfer and subsequent “click” coupling of a fluorophore can be performed even in cell lysates. For RNA labeling, the activity of an archaeal RNA 2‘-O-MTase C/D ribonucleoprotein complex (RNP) with synthetic cofactors was investigated. It was shown that synthetically reprogrammed guide RNA sequences can be used to direct the C/D RNP-dependent transfer of a prop-2-ynyl group to predetermined nucleotides in substrate RNAs. Followed by AAC this can be used for programmable sequence-specific labeling of a variety of RNA substrates in vitro. These new possibilities for specific labeling of nucleic acids can be adopted in biochemistry, biomedical, nanotechnology, etc. research.
|
160 |
A method for the genetically encoded incorporation of FRET pairs into proteinsLammers, Christoph 15 July 2014 (has links)
No description available.
|
Page generated in 0.0649 seconds