Spelling suggestions: "subject:"[een] COATING"" "subject:"[enn] COATING""
391 |
Framtagning av testmetod för värmeledningspåverkan av formsprutningsverktygens ytbeläggningHolmgren, Julia, Christensen, Fredrik January 2019 (has links)
Sedan 1951 har Tetra Pak tillverkat livsmedelsförpackningar, formsprutningsverktyg och fyll-ningsmaskinerna för livsmedelsförpackningar. En del livsmedelsförpackningar som t.ex. gräddeoch yoghurt kan ha en formsprutad topp av plast. Det är nödvändigt att den formsprutade plas-ten stelnar så snabbt som möjligt. För att minska tiden för stelning så används formverktygmed hög värmeledningsförmåga, detta för att få stabila detaljer och ändå göra det möjligt atthålla en hög produktion. En acceptabel livslängd på verktygen uppnås genom att de ytbeläggs.Ytbeläggningen består dels av en hårdanodiserad yta, ett lager av teflon. Dessvärre har teflonen sämre värmeledningsförmåga än metaller som formverktygen är tillverkad i. I detta arbetehar en metod för att avgöra hur mycket ytbeläggningen påverkar värmeledningen utvecklats.Resultaten av arbetet kommer användas för att kunna göra nya materialval. Under projektetutvecklas en testrigg där testerna visar att verktyg utan ytbeläggning har en värmelednings-förmåga som är 24% bättre än för belagda verktyg. Därmed finns det mycket att vinna på attanvända en annan ytbeläggning. / Tetra Pak has since 1951 manufactured food packaging, injection molding tools and fillingmachines for food packaging. Some of the food packaging as for cream and yogurt may havea injection molded plastic top. It is necessary that the injection molded plastic solidifies asquickly as possible. In order to reduce the time for solidification, molding tools with highthermal conductivity are used, in order to obtain stable details and still make it possible tokeep a high production. To achieve an acceptable tool life, they are coated. The surface coatingconsists partly of a hard anodized surface and a layer of teflon. Unfortunately, teflon has worsethermal conductivity than metals that the molding tools are made of. In this project, a methodto determine how much the surface coating affect the thermal conductivity is being developed.The results of the project will be used to make new material choices. During the project, atest rig is developed where the tests show that tools without surface coating have a thermalconductivity that is 24% better than for coated tools. That means there are a lot to gain byselect a new surface coating.
|
392 |
Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater EffluentKurniasari, Novita 12 1900 (has links)
Ceramic membranes offer more advantageous performances than conventional
polymeric membranes. However, membrane fouling caused by Natural Organic
Matters (NOM) contained in the feed water is still become a major problem for
operational efficiency. A new method of ceramic membrane pre-coating with
Powdered Activated Carbon (PAC), which allows extremely contact time for
adsorbing aquatic contaminants, has been studied as a pre-treatment prior to
ceramic microfiltration membrane. This bench scale study evaluated five different
types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that
KCU 6 with larger pore size was performed better compared to other PAC when
pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with
KCU 6 was significantly enhance NOM removal, reduced membrane fouling and
improved membrane performance. Increase of total membrane resistance was
suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for
biopolymers, humic substances and building blocks, respectively was achieved at
pre-coating dose of 30 mg/l. Adsorption was found to be the major removal
mechanism of NOM. Results obtained showed that biopolymers removal are
potentially correlated with enhanced membrane performance.
|
393 |
Silicate Glass Coating on Copper Nanoparticles and Its Further Application to a Transparent Corrosion Resistant Film for Magnesium Alloys / 銅ナノ粒子のシリカガラス被覆とマグネシウム合金用耐酸化被膜への応用Shiomi, Shohei 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18277号 / 工博第3869号 / 新制||工||1593(附属図書館) / 31135 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 松原 英一郎, 教授 杉村 博之, 教授 邑瀬 邦明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
394 |
High Manganese Press Hardenable Steel for Automotive Safety ApplicationsKheiri, Sara January 2023 (has links)
In recent years, there has been an increase in the use of press hardened steel (PHS) in the body-in-white of automobiles, namely in parts such as side impact beams, roof rails, engine firewalls, and the floor area. As these parts are expected to possess corrosion resistance, Al-Si coatings are utilized on them. The implementation of Zn coatings is limited, despite possessing improved corrosion resistance attributed to cathodic corrosion protection, due to the detrimental effects of liquid metal embrittlement (LME) and microcracking. LME can be mitigated if stamping occurs at a temperature lower than the Fe-Zn peritectic temperature of 782 °C, as this ensures that the conditions of LME are not met and the cathodically-protective Γ-Fe3Zn10 phase is formed. The objective of this work was to determine a process window for stamping at lower temperatures for a GA80-coated prototype steel (steel K) with the composition of 0.19C-1.92Mn-0.20Si-0.003B-0.03Ti (wt.%). The target mechanical properties in this process window were UTS ≥ 1400 MPa, and YS ≥ 1000 MPa. To achieve robust cathodic corrosion protection, more than 15 vol% of Γ-Fe3Zn10 in the coating was desired. Furthermore, it was aimed to determine the robustness of this process and the industrial feasibility of it through pilot-scale trials for the GA80-coated prototype steel. To this end, a bare prototype steel (steel I) with the composition of 0.20C-1.96Mn-0.25Si-0.003B-0.01Ti was compared to GA-coated steel K. It was found that stamping a direct hot press forming (DHPF) temperature of 650 °C produced similar mechanical properties such as tensile strengths and ductilities. Microstructural analysis of laboratory-scale DHPF for steel K showed that both the coating and the substrate microstructures were not a strong function of the DHPF temperatures of 550 – 700 °C. The substrate predominantly consisted of martensite with small amounts of ferrite and the coating consisted of α-Fe(Zn) and ≥ 15 vol.% Γ-Fe3Zn10. Based on the fraction of Γ-Fe3Zn10 and the coating thickness, robust cathodic corrosion protection is expected from GA80-coated steel K. Furthermore, no evidence of LME or severe microcracking was observed in the microstructure for DHPF temperatures of 550–700 °C for steel K and ductile fracture was observed in tensile coupons. Tensile testing for laboratory-scale DHPF for steel K showed that the mechanical properties such as YS, UE and PUE were not significantly affected by DHPF temperatures of 550-700 °C. Moreover, the targets of UTS ≥ 1400 MPa, and YS ≥ 1000 MPa were met for all DHPF temperatures of 550 – 700 °C. Through pilot-scale tensile testing of steel K, it was determined that the targets for tensile strengths (UTS and YS), were achieved across various conditions involving austenitization at 890 °C for 60 – 240 s and DHPF temperatures ranging from 550 – 700 °C. These findings strongly suggest that industrial feasibility is attainable for DHPF of GA-coated steel K at lower temperatures, enabling the attainment of desirable mechanical properties and robust corrosion protection. Thus, it can be concluded that the process window yielding desirable properties for steel K was determined to be austenitization at 890 °C for 60 – 240 s and DHPF temperatures between 550 – 700 °C. / Thesis / Master of Applied Science (MASc) / The forming process of the steels used in the automotive industry is not suitable for zinc coatings because it requires pressing at high temperatures to ensure obtaining strong steels. Thus, zinc coatings cannot be utilized despite the desirable cathodic corrosion protection properties they can provide. This study aimed to determine a suitable process window for a zinc-coated prototype steel that would have both high strength and desirable corrosion protection. The zinc-coated prototype steel was pressed at lower temperatures. It was observed that the target mechanical properties were met for all the temperatures tested. Moreover, robust cathodic corrosion protection is expected for all the temperatures. Furthermore, pilot-scale tests yielded comparable results to those obtained in the laboratory, indicating that this process can be successfully applied in the industry as it possesses a sufficiently large process window.
|
395 |
Effects of Phosphine Fumigation and Food-grade Coatings on the Safety, Mite Mortality, and Sensory Quality of Dry-cured HamZhao, Yan 09 May 2015 (has links)
Dry-cured hams often become infested with ham mites (Tyrophagus putrescentiae) during the aging process. Methyl bromide has been used to fumigate dry cured ham processing plants and is the only known fumigant that is effective at controlling ham mite infestations. However, methyl bromide will be phased out of all industries by 2015. This research was designed to 1) determine the efficacy of phosphine fumigation at controlling ham mites and red-legged beetles and its impact on the sensory quality and safety of dry cured hams, and 2) to develop and evaluate the potential of using food-grade film coatings to control mite infestations without affecting the aging process or sensory properties of dry-cured hams. Fumigation trials were conducted in simulated ham aging houses and commercial ham aging houses. Mite postembryonic mortality was 99.8% in the simulated aging houses and >99.9% in commercial aging houses two weeks post fumigation. Sensory tests with trained panelists indicated that there were no detectable differences (P>0.05) between phosphine fumigated and control hams. An analytical method was developed to determine phosphine concentration in ham. In addition, residual phosphine concentration was below the legal limit of 0.01 ppm in ham slices taken from phosphine fumigated hams. Coating trials were conducted on ham cubes and slices. Cubes coated with xanthan gum+20% propylene glycol and carrageenan/propylene glycol alginate+10% propylene glycol were effective at controlling mite infestations under laboratory conditions. Barrier properties (water vapor permeability and oxygen permeability) were measured to estimate the impact of coatings during the aging process. It was evident that carrageenan/propylene glycol alginate were permeable to moisture and therefore could potentially be applied to the hams during the aging process.
|
396 |
Ab-Initio and Molecular Dynamics Simulations Capturing the Thermodynamic, Kinetics, and Thermomechanical Behavior of Galvanized Low-Alloy SteelAslam, Imran 14 December 2018 (has links)
A seven-element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, C, Al, Zn, and O is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels, inhibition layer, and galvanized coatings. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, thermomechanical stress-strain behavior, and solid-solution strengthening mechanisms for steel alloys comparable to those reported in the literature. Interfacial energies between the steel substrate, inhibition layer, and surface oxides shed light on the interfacial nanostructures observed in the galvanizing process.
|
397 |
Improving the Tool Performance by Using Soft Coatings During Machining of Inconel 718Montazeri, Saharnaz 17 December 2020 (has links)
Increasing tool life is a significant objective in production. Achieving this objective in a machining process poses a significant challenge, especially during cutting hard-to-cut materials such as superalloys, due to the severe tool chipping/failure at the beginning of the cut. Although numerous attempts have been carried out to improve tool performance and prolong tool life during the machining of difficult-to-cut materials over the past several years, researchers have not obtained sufficient control over sudden tool failure/chipping. The focus of this study is to prolong tool life and control tool chipping by developing an ultra-soft deposited layer on the cutting tool that can protect it during the machining of difficult-to-cut materials such as Inconel 718. In the current study, an ultra-soft layer of material is deposited on the tool through two different techniques; a typical physical vapor deposition (PVD) technique and a novel developed method called “pre-machining”. In the PVD method, the soft layer is deposited under a high vacuum environment using a PVD coater. In the novel pre-machining method, the soft layer is deposited through a very short machining process involving Al-Si. It should be mentioned that soft coatings have never been used before for machining applications of difficult-to-cut materials including Inconel 718.
This study shows that in contrast to what is expected, depositing an ultra-soft layer on the cutting tool significantly improves tool performance, by reducing chipping, and improving the machined surface integrity during cutting of Inconel 718. The obtained results show up to a 500% ± 10% improvement in tool life and around a 150% ± 10% reduction in cutting forces. Significant reductions in work hardening, residual stress, and surface roughness on the machined surface were other main achievements of the current study. / Thesis / Doctor of Philosophy (PhD) / Inconel 718 is considered to be a difficult-to-cut material due to its poor machinability. Significant tool failure at the early stage of cutting is the main challenge of machining this material and is the most significant contributing factor to its high manufacturing costs. Studies show that the common methods used to tackle this issue have not been completely successful. The goal of the present study is to tackle the machining challenges of Inconel 718 by developing tool coatings that meet the specific needs of the material to eliminate tool failure and thereby improve overall machining performance. For this purpose, a new tool coating material and a novel deposition technique that can be used as an alternative for commonly used coatings were developed in this study to improve the tool performance during the machining of Inconel 718. In addition, thorough studies have been carried out to gain a better understanding of the dominant wear phenomena and tool surface treatments that result in an improvement in the machinability of Inconel 718.
|
398 |
An Analysis of On-Axis Rotation Pin-on-Disc Tribometry and its Correlation to Friction in Metal CuttingBoyd, Jeremy January 2021 (has links)
In metal cutting applications, development of coatings to reduce friction between tool and chip and also enhance wear resistance of the tool is an important objective. The effectiveness of such coatings is ultimately evaluated through metal cutting trials; however, bench-scale tests can play a role in predicting some aspects of a candidate coating’s performance. This dissertation further develops the concept of an on-axis rotation pin-on-disc tribometer for the evaluation of friction coefficient between tool and work material pairs under temperature and stress conditions similar to those experienced between tool and chip in metal cutting.
Firstly, the characteristics of the imprint formed by the spherical-tipped pin in the disc during tribometer tests are studied. Specific focus is given to the growth of the imprint during the rotating stage of the test; the severity of pile-up of work material around the periphery of the imprint; different zones of contact at the imprint surface; and evidence of (or lack thereof) of bulk shear in the surrounding work material below the surface of the disc.
The importance of estimating the actual temperature at the pin-disc interface (inaccessible for direct measurement) is also raised. Evidence is presented that suggests the pin-disc interface is higher for tests involving coatings with higher electrical resistivity, despite exhibiting similar temperatures 2 mm above the interface (accessible for direct measurement). A numerical model is developed in an effort to estimate the pin-disc interface during stationary specimen tests for specific pin and disc materials under controlled conditions. An empirical relationship is also established to express the variation of electrical resistivity with temperature for cemented tungsten carbide (6% cobalt content).
Finally, coefficient of friction results for coated and uncoated cemented carbide pins in contact with AISI 1045 steel discs are related to short duration turning trials involving the same material pairs. Coatings exhibiting low friction coefficient result in appreciably lower cutting forces, reduced built-up edge intensity and more tightly curled chips. The possibility that the low thermal conductivity of such coatings could be producing similar effects by forcing more heat into the chips is also explored. / Dissertation / Doctor of Philosophy (PhD) / This dissertation further develops the concept of a pin-on-disc apparatus for evaluating the friction coefficient between materials under temperature and stress conditions similar to those experienced in metal cutting.
Firstly, characteristics of the imprint formed by the pin in the disc during tests with the apparatus are studied. Specific focus is given to the growth of the imprint during the rotating stage of the test and different zones of contact at the imprint surface.
Secondly, the importance of estimating the actual temperature at the pin-disc interface, inaccessible for direct measurement, is raised and a numerical model developed to aid in its estimation.
Finally, coefficient of friction results generated on the apparatus are correlated to the magnitude of forces measured and other observations made during metal cutting trials involving the same material pairs.
|
399 |
Polyester Based Hybrid Organic CoatingsWang, Xiaojiang 20 July 2012 (has links)
No description available.
|
400 |
Performance of High-temperature Coatings : Oxidation and InterdiffusionSun, Xiaoyu January 2023 (has links)
The use of aluminiferous coatings profoundly improves the service life of superalloys but leads to the microstructural degradation of superalloys and thus the loss of mechanical properties. To solve this trade-off, two strategies were employed in this research. At first, we modified MCrAlY coatings by inducing Ta to reduce the interdiffusion effect on substrate alloys. This strategy was verified by 2000 h/1100 °C oxidation tests in two Ta-containing MCrAlY-IN792 systems. The system with 3.3 wt.% Ta MCrAlY displays an outstanding resistance to γ′ depletion in the substrate and comparable oxidation property in comparison with a reference system of Ta-free MCrAlY-IN792. Increasing Ta to 7.4 wt.% results in reduced oxidation resistance. Thermodynamic simulations revealed the phase-transformation mechanism induced by initial interdiffusion, uncovering the cause of γ′ depletion in the substrate and the mechanism behind improving resistance to γ′ depletion by Ta addition. In addition, we developed novel Y-doped AlCoCrFeNi high-entropy alloys by tuning Al/Cr ratio ACR. After a long-term isothermal test in air at 1100 °C up to 1000 h, the higher ACR alloy displayed a stronger oxidation resistance at the early oxidation stage, whereas a contrary result could be detected in the later stage. The microstructural analysis confirmed that the fast growth of spinel dominated the early oxidation process, leading to higher oxidation rate of the lower ACR alloys. The later stage was governed by the growth of Al2O3. Lager size Al2O3 gain formed on the lower ACR alloy impeded the inward diffusion of oxygen and thus reduced the oxidation rate, which was further verified by our thermodynamic calculations.
|
Page generated in 0.0446 seconds