• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 22
  • 22
  • 21
  • 20
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modeling and identification of the constitutive behaviour of magneto-rheological elastomers / Modelisation et identification de la loi de comportement des elastomeres magneto-rheologiques

Voropaieff, Jean-Pierre 14 September 2018 (has links)
Ce travail de thèse porte sur une catégorie de matériaux actifs dénommés Elastomères Magnéto-Rhéologiques (EMR). Ces derniers sont composés de particules micrométriques et magnétisables imprégnées dans une matrice élastomère isolante. Il est possible de modifier les propriétés mécaniques de tels matériaux en les soumettant à un champ magnétique externe. Avec pour objectif d’aboutir à une caractérisation couplée (magnéto-mécanique) du comportement des EMRs en grandes déformations et en présence de champs magnétiques élevés, ce travail propose une approche à la fois expérimentale, théorique et numérique.La première partie de ce travail s’intéresse à des aspects expérimentaux où l’influence de la microstructure (isotrope et transverse isotrope) et l’influence de la fraction volumique de particules sont étudiées. Un échantillon dédié est développé afin d’obtenir simultanément des champs mécaniques et magnétiques les plus homogènes possibles dans celui-ci lors d’une caractérisation couplée. La question de l’adhésion interfaciale entre les particules de fer doux et la matrice en silicone est également traitée et il est montré qu’un traitement chimique des particules est nécessaire afin d’éviter toute décohésion avec la matrice lorsque le matériau est soumis à un champ magnétique externe. Avant d’analyser les données obtenues, le dispositif expérimental permettant d’obtenir de manière simultanée une mesure du champ de déformation en trois dimensions et une mesure des champs magnétiques internes, est décrit. Malgré l’ensemble des difficultés expérimentales en grande partie dûes à des phénomènes d’instabilité qui sont omniprésents chez les EMRs, de nombreuses données sont collectées et serviront à la calibration des lois de comportement.La seconde partie de cette thèse couvre la modélisation couplée magnéto-mécanique des EMRs en s’appuyant sur le cadre théorique général des solides magnéto-élastiques proposé par Kankanala, Triantafyllidis et Danas (2004, 2012, 2014). En particulier, la méthode énergétique (qui s’appuie sur l’utilisation d’une fonction d’énergie libre) est préférée et des formulations variationnelles équivalentes (qui diffèrent entre elles simplement par le choix de la variable magnétique indépendante utilisée pour décrire le problème : B, H ou M) sont proposées et implémentées dans des codes numériques 3D s’appuyant sur la méthode des éléments finis. Ces outils numériques sont combinés à la méthode de minimisation des moindres carrés afin d’obtenir l’ensemble des paramètres matériaux du modèle de comportement des EMRs. L’utilisation de simulations numériques est nécessaire car une approche purement analytique ne permettrait pas de modéliser « l’effet de forme » observé expérimentalement. En effet, il est primordial de modéliser ce dernier car dans le cas contraire les paramètres identifiés dépendraient de la forme de l’échantillon expérimental et ne décriraient pas uniquement le matériau.La troisième partie de cette étude décrit en détail l’implémentation numérique des différentes formulations variationnelles proposées précédemment. Dans chacun des cas, il est prouvé que l’utilisation d’éléments isoparamétriques est bien adaptée. De nombreuses difficultés numériques ont été observées dans le cas des formulations variationnelles utilisant le champ de déplacement et le potentiel vecteur magnétique comme variables indépendantes. L’ensemble de ces difficultés (comme par exemple la minimisation de l’énergie potentielle sous la contrainte imposée par la jauge de Coulomb) est surmonté dans ce travail. Avant de décrire les différents problèmes tests utilisés pour s’assurer de la validité et de la précision des codes numériques, les différentes étapes nécessaires à la simulation d’un problème aux limites sont expliquées. Plus précisément, les questions liées aux spécificités des conditions aux limites à appliquer sur le potentiel vecteur magnétique ou encore aux conditions de symétries, sont traitées. / In this thesis, we study a class of “active materials” called Magnetorheological elastomers (MRE) which are ferromagnetic impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. With the purpose of characterizing the behavior of MREs up to large strains and high magnetic fields, this work brings a completely novel experimental, theoretical and numerical approach.The first part of this study focuses on an experimental investigation of MRE where multiple microstructures (isotropic and transversely isotropic materials) and multiple particles’ volume fraction are tested. A special sample geometry is designed in order to increase the uniformity of internal magnetic and mechanical fields measured during coupled-field experiments. The interfacial adhesion between the iron fillers and the silicone matrix is investigated and we show that when specimens are subjected to external magnetic fields, a silane primer treatment of the particles is needed to prevent debonding at the interface particle/matrix. Then, we present the magneto-mechanical testing setup that allows simultaneous 3D mechanical and magnetic measurements before discussing the results. Even if is found that instabilities are ubiquitous in MREs, lots of useful data are collected and will be used to compute the parameters proposed in the material model.The second part of the thesis is dedicated to the modeling of isotropic MREs. The continuum description proposed by Kankanala, Triantafyllidis and Danas (2004, 2012, 2014) to derive constitutive laws that account for finite strains is used and, in particular, the energetic approach (that requires an energy density function) is chosen. Multiple equivalent variational formulation alternatives (based on different choices of the independent magnetic variable used in the energy function: B, H or M) are given and implemented into 3D finite element (FEM) codes. Based on the use of FEM simulation in combination with least square optimization methods, the previously collected experimental data are fitted and all three energy functions ψB , ψH and ψM are computed. The obtained material model proves to have excellent predictive capabilities when compared to other experiments not used in the fitting process. The use of numerical tools is necessary to make sure that the calculated material parameters are not influenced by the shape of experimental specimens.The last part of this work details the numerical implementation of the different variational formulations. For each one of them, it is found that isoparametric elements are well suited to simulate coupled magneto-mechanical boundary value problems. We show that special care is needed when implementing variational formulations using the displacement vector and the magnetic vector potential as independent variables. Indeed, ensuring the uniqueness of the vector potential requires to numerically enforce the Coulomb gauge, which leads to numerical complications that are addressed in this thesis. Before describing the different patch tests that have been considered to validate the numerical codes, we show which are the valid boundary conditions for the magnetic vector potential and how to use the symmetry properties of a given boundary value problem to reduce its complexity and the computational resources needed to solve it.
32

Modeling shock wave propagation in discrete Ni/Al powder mixtures

Austin, Ryan A. 15 November 2010 (has links)
The focus of this work is on the modeling and simulation of shock wave propagation in reactive metal powder mixtures. Reactive metal systems are non-explosive, solid-state materials that release chemical energy when subjected to sufficiently strong stimuli. Shock loading experiments have demonstrated that ultra-fast chemical reactions can be achieved in certain micron-sized metal powder mixtures. However, the mechanisms of rapid mixing that drive these chemical reactions are currently unclear. The goal of this research is to gain an understanding of the shock-induced deformation that enables these ultra-fast reactions. The problem is approached using direct numerical simulation. In this work, a finite element (FE) model is developed to simulate shock wave propagation in discrete particle mixtures. This provides explicit particle-level resolution of the thermal and mechanical fields that develop in the shock wave. The Ni/Al powder system has been selected for study. To facilitate mesoscale FE simulation, a new dislocation-based constitutive model has been developed to address the viscoplastic deformation of fcc metals at very high strain rates. Six distinct initial configurations of the Ni/Al powder system have been simulated to quantify the effects of powder configuration (e.g., particle size, phase morphology, and constituent volume fractions) on deformation in the shock wave. Results relevant to the degree of shock-induced mixing in the Ni/Al powders are presented, including specific analysis of the thermodynamic state and microstructure of the Ni/Al interfaces that develop during wave propagation. Finally, it is shown that velocity fluctuations at the Ni/Al interfaces (which arise due to material heterogeneity) may serve to fragment the particles down to the nanoscale, and thus provide an explanation of ultra-fast chemical reactions in these material systems.
33

Numerical Analysis Of Large Size Horizontal Strip Anchors

Krishna, Y S R 07 1900 (has links)
Structures like transmission towers, tele-communication masts, dry-docks, tall chimneys, tunnels and burried pipelines under water etc are subjected to considerable uplift forces. The net effect of external loading on the foundations of these structures results in forces that try to pull the foundations out of the ground. Anchors are usually provided to resist such uplift forces. Earlier theoretical research of anchor behavior has focused on elastic response and ultimate pullout capacity. Many investigators have proposed techniques for determining the collapse load of anchors. Essentially the approaches involve the use of limit equilibrium concepts, with some assumptions regarding the shape of the failure surface and/or the influence of the soil above the anchor. The possible effect of dilatency and initial stress state are not considered in these methods. A number of investigators have used the results of small size model anchors to understand the behavior and extrapolated the results for predicting the behavior of large sized anchors. This has lead to unsatisfactory results. It has been clearly shown by Dickin (1989) that the failure displacements and load displacement curve patterns are very different for small and large sized anchors, i.e. they are not just proportional to the size of the anchor. Critical pullout load and the load displacement behavior are required for the complete analysis of anchor foundations. Though, many theories have been proposed to predict the uplift capacity within the limits of accuracy required at engineering level, at present no simple rational method is available for computing deformations. In the present investigation attempts have been made to analyze the load deformation behavior of large size strip anchors in sands, clays and layered soils using two-dimensional explicit finite difference program FLAG (Fast Lagrangian Analysis of Continua), well suited for geomaterials, by assuming soil to be a Mohr-Coulomb material in the case of sands and modified Cam-clay material in the case of clays. It is now well understood that the shearing resistance of a granular soil mass is derived from two factors frictional resistance and the dilatency of the soil. So the peak friction angle can be divided in to two components critical friction angle Фcv and dilation angle Ψ. Critical friction angle is the true friction angle as a result of frictional resistance at interparticle level when the soil is shearing at constant volume. If Фcv for a given soil remains constant, the value of Ψ has to increase with the increase in initial density of soil packing. The dilatency of a soil mass gradually decreases with continued shearing from its initial high value to zero after very large shear strains, when the soil finally reaches a constant, steady volume at critical states. Correspondingly the observed friction angle Ф reduces from its peak value to Фcv at a very large strain. In earlier days, clays used to be characterized by the strength parameters c and Ф. often, under undrained conditions, Ф would be even considered zero. But in the recent developments, it is understood that all the strength of clays is frictional. There is nothing like cohesion. The part of shear strength, which appears to be independent of normal stress, is shown to be the effect of over-consolidation and the resulting dilation. Thus although Cam-clay model uses zero cohesion for all clays, it reflects this component of strength through over-consolidation and in a more realistic way. Hence, it is appropriate to consider the pre-consolidation pressure as parameter in the analysis. More specifically, the various aspects covered in this investigation are as follows. Chapter 1 provides the general introduction. In chapter 2, the existing literature for the analysis of anchors for both experimental and analytical investigations on the pullout capacity of anchors in homogeneous and layered soils and the load deformation behavior of anchors under pullout are briefly reviewed. Chapter 3 deals with the features and the implementation of the two-dimensional explicit finite difference program, Fast Lagrangian Analysis of Continua (FLAC) and the constitutive modeling of soils. It discusses the background and implementation of Strain softening / hardening model. This model is based on the Mohr- Coulomb model with non-associated shear and associated tension flow rules. In this model the cohesion, friction, dilation and tensile strength may harden or soften after the onset of the plastic yield. Further the critical state concepts and implementation of the modified Cam-clay model have been discussed. Cam-clay model originally developed for clays reflects the hydrostatic pressure or density dependent hardening material response. Chapter 4 focuses on the analysis of load deformation behavior of large size anchors in granular soils. Two-dimensional explicit finite difference program (FLAC) is used for the simulations and the soil is modeled as a Mohr-Coulomb strain softening/hardening material In this chapter a series of simulations have been carried out on large size anchor plates, with parametric variation. By analyzing these results, a generalized load deformation relationship for different sizes of anchors and different types of soil have been proposed. The results are presented in the form of influence/design charts which can be used in hand calculations to obtain an estimate of anchor capacity and deformation for a wide range of soil types and size of anchors. Chapter 5 deals with the analysis of the drained and undrained behavior of large size horizontal strip anchors in clays using modified Cam-clay model. Earlier investigators have studied the undrained behavior of anchor plates in clays, but no studies are reported in literature for the drained behavior of anchors in clays. Further it is not clear whether, drained or undrained condition will be critical for an anchor. In this chapter the drained and undrained behavior of large size anchor plates in both normally consolidated and over-consolidated states have been made. It has been found that the undrained pullout capacity of an anchor in a soil of normally consolidated state will always be more than the drained capacity. This is contrast to the usual understanding that undrained behavior is more critical than the drained behavior. In Chapter 6 an attempt has been made to analyze the behavior of large size anchors in two layered sands and in conditions where backfill material has a higher or lower strength than the native soil, for different shape of excavations. Soil is assumed to be a Mohr-coulomb strain softening/hardening material. In Chapter 7 the entire investigation covered in earlier chapters has been synthesized and some specific conclusions have been highlighted.
34

Constitutive modeling of viscoelastic behavior of bituminous materials

Motamed, Arash 10 March 2014 (has links)
Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Therefore, accurate constitutive models for the asphalt binders are critical to ensure accurate performance predictions at a material and structural level. However, researchers who use computational methods to model the micromechanics of asphalt mixtures typically assume that (i) asphalt binders behave linearly in shear, and (ii) either bulk modulus or Poisson’s ratio of asphalt binders is not time dependent. This research develops an approach to measure and model the shear and bulk behavior of asphalt binders at intermediate temperatures. First, this research presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to shear using a Dynamic Shear Rheometer (DSR). The DSR test results showed that under certain conditions a compressive normal force was generated in an axially constrained specimen subjected to cyclic torque histories. This normal force could not be solely attributed to the Poynting effect and was also related to the tendency of the asphalt binder to dilate when subjected to shear loads. The generated normal force changed the state of stress and interacted with the shear behavior of asphalt binder. This effect was considered to be an “interaction nonlinearity” or “three dimensional effect”. A constitutive model was identified to accommodate this effect. The model was successfully validated for several different loading histories. Finally, this study investigated the time-dependence of the bulk modulus of asphalt binders. To this end, poker-chip geometries with high aspect ratios were used. The boundary value problem for the poker-chip geometry under step displacement loading was solved to determine the bulk modulus and Poisson’s ratio of asphalt binders as a function of time. The findings from this research not only improve the understanding of asphaltic materials behavior, but also provide tools required to accurately predict pavement performance. / text
35

Constitutive modeling and finite element analysis of the dynamic behavior of shape memory alloys

Azadi Borujeni, Bijan 11 1900 (has links)
Previous experimental observations have shown that the pseudoelastic response of NiTi shape memory alloys (SMA) is localized in nature and proceeds through nucleation and propagation of localized deformation bands. It has also been observed that the mechanical response of SMAs is strongly affected by loading rate and cyclic degradation. These behaviors significantly limit the accurate modeling of SMA elements used in various devices and applications. The aim of this work is to provide engineers with a constitutive model that can accurately describe the dynamic, unstable pseudoelastic response of SMAs, including their cyclic response, and facilitate the reliable design of SMA elements. A 1-D phenomenological model is developed to simulate the localized phase transformations in NiTi wires during both loading and unloading. In this model, it is assumed that the untransformed particles located close to the transformed regions are less stable than those further away from the transformed regions. By consideration of the thermomechanical coupling among the stress, temperature, and latent heat of transformation, the analysis can account for strain-rate effects. Inspired by the deformation theory of plasticity, the 1-D model is extended to a 3-D macromechanical model of localized unstable pseudoelasticity. An important feature of this model is the reorientation of the transformation strain tensor with changes in stress tensor. Unlike previous modeling efforts, the present model can also capture the propagation of localized deformation during unloading. The constitutive model is implemented within a 2-D finite element framework to allow numerical investigation of the effect of strain rate and boundary conditions on the overall mechanical response and evolution of localized transformation bands in NiTi strips. The model successfully captures the features of the transformation front morphology, and pseudoelastic response of NiTi strip samples observed in previous experiments. The 1-D and 3-D constitutive models are further extended to include the plastic deformation and degradation of material properties as a result of cyclic loading.
36

Constitutive modeling and finite element analysis of the dynamic behavior of shape memory alloys

Azadi Borujeni, Bijan 11 1900 (has links)
Previous experimental observations have shown that the pseudoelastic response of NiTi shape memory alloys (SMA) is localized in nature and proceeds through nucleation and propagation of localized deformation bands. It has also been observed that the mechanical response of SMAs is strongly affected by loading rate and cyclic degradation. These behaviors significantly limit the accurate modeling of SMA elements used in various devices and applications. The aim of this work is to provide engineers with a constitutive model that can accurately describe the dynamic, unstable pseudoelastic response of SMAs, including their cyclic response, and facilitate the reliable design of SMA elements. A 1-D phenomenological model is developed to simulate the localized phase transformations in NiTi wires during both loading and unloading. In this model, it is assumed that the untransformed particles located close to the transformed regions are less stable than those further away from the transformed regions. By consideration of the thermomechanical coupling among the stress, temperature, and latent heat of transformation, the analysis can account for strain-rate effects. Inspired by the deformation theory of plasticity, the 1-D model is extended to a 3-D macromechanical model of localized unstable pseudoelasticity. An important feature of this model is the reorientation of the transformation strain tensor with changes in stress tensor. Unlike previous modeling efforts, the present model can also capture the propagation of localized deformation during unloading. The constitutive model is implemented within a 2-D finite element framework to allow numerical investigation of the effect of strain rate and boundary conditions on the overall mechanical response and evolution of localized transformation bands in NiTi strips. The model successfully captures the features of the transformation front morphology, and pseudoelastic response of NiTi strip samples observed in previous experiments. The 1-D and 3-D constitutive models are further extended to include the plastic deformation and degradation of material properties as a result of cyclic loading.
37

Prise en compte d'une échelle intermédiaire dans la modélisation micro-structurelle des sols granulaires / Including a meso-structure in multi-scale modeling of granular soils

Zhu, Huaxiang 11 December 2015 (has links)
Les matériaux granulaires exhibe un spectre très large de propriétés constitutives, le long de chemins de chargement très divers. Développer des modèles constitutifs permettant de reproduire ces caractéristiques a demeuré un réel challenge scientifique au cours des dernières décennies. A cet égard, les approches multi-échelles constituent aujourd’hui une voie très prometteuse. Elles permettent de relier les propriétés macroscopiques à celles observées à l’échelle microscopique.Une investigation a été menée sur la base de simulations numériques discrètes (DEM)d’essais biaxiaux, afin d’identifier les caractéristiques micro-structurelles du matériau granulaire, la manière dont elles évoluent au cours d’un chemin de chargement, et le rôle qu’elles jouent dans l’émergence du comportement macroscopique. A l’échelle mésoscopique,le réseau de transmission de force (chaines de force) et les cellules définies parles vecteurs branches (meso-cycles) apparaissent jouer un rôle de première importance.Les meso-cycles, construits à partir du réseau de contact de l’assemblage, peuvent être caractérisés en fonction du nombre de cotés qu’ils contiennent (topologie). Leur influence sur le comportement volumique de l’échantillon est en effet étroitement liée à ce nombre de contact. En outre, leur interaction avec les chaines de force est également fortement dépendante de leur topologie. Ainsi, les cycles contenant 3 cotés (L3) participent activement à la stabilisation des chaines de force, alors que les cycles contenants au moins6 cotés (L6+) contribuent essentiellement au comportement dilatant de l’échantillon et à l’effondrement des chaines de force. Enfin, l’existence d’une méso-structure unique à l’état critique, au sein de la bande de cisaillement (rupture localisée) ou au sein de l’échantillon (rupture diffuse), est clairement démontrée.viii Sur la base de ces résultats, un modèle constitutif a été développé à partir du modèle H-directionnel (Nicot and Darve, 2011b). La structure du matériau granulaire est décrite par un assemblage d’hexagones (modélisant les cycles L6), orientés dans toutes les directions de l’espace. A partir d’opérations d’homogénéisation, les contraintes et les déformations incrémentales peuvent être reliées à l’échelle de l’assemblage, donnant lieu à un modèle de comportement dont la performance a pu être testée le long de chemins de chargements variés. / Granular materials exhibit a wide spectrum of constitutive features under various loading paths. Developing constitutive models which succeed to characterize these features has been challenging scientists for decades. A promising direction of achieving this can be the multi-scale approach. Through which the constitutive model is formulated in the way that relating material's macroscopic properties to their micro-scale essences, namely, corresponding micro-structure properties.To better characterize the micro-structure and formulate the relation between different scales, a comprehensive investigation have been carried out on the basis of numerical biaxial tests using 2D discrete element method (DEM), in order to ascertain the micro-structure characteristics of the granular material, the way they evolve versus loading and their corresponding rules in the macroscopic behaviors. In a meso-scale, intermediate between the single contact scale and the macro-scale, the force transmission network (force-chains) and area element enclosed by contacts branches (meso-loops) are highlighted in terms of their significant influences on material's macro-scale behavior. Meso-loops herein are tessellated from the whole area of the granular assembly by the contact branch network, and are subsequently categorized according to their side number.The development of meso-loops is observed to be intimately related to material's volumetric evolution, especially the plastic part. Then, the interaction between force-chains and meso-loops and its significance to the global volumetric behavior are revealed. Otherwise, in critical state, an identical meso-structure is found in the failure area of both localized and diffuse failure mode. Meso-loops with 3 sides (L3) appear to be indispensable for the force-chain stability, meanwhile, meso-loops with more than or equal to 6 sides (L6+) contribute much to the volume expansion and accelerate the force-chain buckling. The interplay between L3 and L6+ largely embody, or are representative of, the various mechanical performance of the granular material.A constitutive model has been developed by modifying the H-directional model. In this model, individual hexagons, representatives of L6+, construct the fabric as distributing along different directions in the space. Then multi-scale approach is then used to relate macroscopic properties from local ones, and eventually, to give the constitutive relation. This model is then validated in different loading paths, and eventually proved satisfying.
38

Constitutive modeling and finite element analysis of the dynamic behavior of shape memory alloys

Azadi Borujeni, Bijan 11 1900 (has links)
Previous experimental observations have shown that the pseudoelastic response of NiTi shape memory alloys (SMA) is localized in nature and proceeds through nucleation and propagation of localized deformation bands. It has also been observed that the mechanical response of SMAs is strongly affected by loading rate and cyclic degradation. These behaviors significantly limit the accurate modeling of SMA elements used in various devices and applications. The aim of this work is to provide engineers with a constitutive model that can accurately describe the dynamic, unstable pseudoelastic response of SMAs, including their cyclic response, and facilitate the reliable design of SMA elements. A 1-D phenomenological model is developed to simulate the localized phase transformations in NiTi wires during both loading and unloading. In this model, it is assumed that the untransformed particles located close to the transformed regions are less stable than those further away from the transformed regions. By consideration of the thermomechanical coupling among the stress, temperature, and latent heat of transformation, the analysis can account for strain-rate effects. Inspired by the deformation theory of plasticity, the 1-D model is extended to a 3-D macromechanical model of localized unstable pseudoelasticity. An important feature of this model is the reorientation of the transformation strain tensor with changes in stress tensor. Unlike previous modeling efforts, the present model can also capture the propagation of localized deformation during unloading. The constitutive model is implemented within a 2-D finite element framework to allow numerical investigation of the effect of strain rate and boundary conditions on the overall mechanical response and evolution of localized transformation bands in NiTi strips. The model successfully captures the features of the transformation front morphology, and pseudoelastic response of NiTi strip samples observed in previous experiments. The 1-D and 3-D constitutive models are further extended to include the plastic deformation and degradation of material properties as a result of cyclic loading. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
39

Finite Element Modeling and Experimental Characterization of Skin and Subcutaneous Tissue Damage and Fracture

John David Toaquiza Tubon (12089969) 18 February 2022 (has links)
This study provides an overview of the implementation of a nonlinear microstructural constitutive model in ABAQUS employing a user subroutine at the level of the biomedical engineer. Two different element formulations are employed: a continuum incompressible and a plane stress incompressible. All examples are validated by performing a number of deformations on 2D and 3D square elements and comparing the analytical formulation in a programming language and the user subroutine in ABAQUS. Application models will be presented that provide a deeper look into the impacts of soft tissue deformation, damage, and fracture. Additionally, we investigate the mechanical behavior of skin layers in terms of the nominal stress-strain curve using uniaxial and cyclic loading tests on porcine skin specimens in two forms: dermis integrating epidermis and hypodermis. Experiments were performed on specimens from the belly and breast of the pigs and under both orthogonal orientations with respect to the spine direction. All tests were carried out at room temperature with cyclic loading at a constant strain rate and increasing stretch increments. Finally, data is fitted using microstructural constitutive model.
40

Thermomechanical Response of Shape Memory Alloy Hybrid Composites

Turner, Travis Lee 01 December 2000 (has links)
This study examines the use of embedded shape memory alloy (SMA)actuators for adaptive control of the themomechanical response of composite structures. Control of static and dynamic responses are demonstrated including thermal buckling, thermal post-buckling, vibration, sonic fatigue, and acoustic transmission. A thermomechanical model is presented for analyzing such shape memory alloy hybrid composite (SMAHC) structures exposed to thermal and mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. The constitutive model developed to describe the mechanics of a SMAHC lamina captures the material nonlinearity with temperature of the SMA and matrix material if necessary. It is in a form that is amenable to commercial finite element (FE) code implementation. The model is valid for constrained, restrained, or free recovery configurations with appropriate measurements of fundamental engineering properties. This constitutive model is used along with classical lamination theory and the FE method to formulate the equations of motion for panel-type structures subjected to steady-state thermal and dynamic mechanical loads. Mechanical loads that are considered include acoustic pressure, inertial (base acceleration), and concentrated forces. Four solution types are developed from the governing equations including thermal buckling, thermal post-buckling, dynamic response, and acoustic transmission/radiation. These solution procedures are compared with closed-form and/or other known solutions to benchmark the numerical tools developed in this study. Practical solutions for overcoming fabrication issues and obtaining repeatable specimens are demonstrated. Results from characterization of the SMA constituent are highlighted with regard to their impact on thermomechanical modeling. Results from static and dynamic tests on a SMAHC beam specimen are presented, which demonstrate the enormous control authority of the SMA actuators. Excellent agreement is achieved between the predicted and measured responses including thermal buckling, thermal post-buckling, and dynamic response due to inertial loading. The validated model and thermomechanical analysis tools are used to demonstrate a variety of static and dynamic response behaviors associated with SMAHC structures. Topics of discussion include the fundamental mechanics of SMAHC structures, control of static (thermal buckling and post-buckling) and dynamic responses (vibration, sonic fatigue, and acoustic transmission), and SMAHC design considerations for these applications. The dynamic response performance of a SMAHC panel specimen is compared to conventional response abatement approaches. SMAHCs are shown to have significant advantages for vibration, sonic fatigue, and noise control. / Ph. D.

Page generated in 0.0429 seconds